{"title":"大自协方差矩阵奇异值分布的矩法","authors":"Qinwen Wang, Jianfeng Yao","doi":"10.1214/15-AIHP693","DOIUrl":null,"url":null,"abstract":"Let $(\\varepsilon_{t})_{t>0}$ be a sequence of independent real random vectors of $p$-dimension and let $X_T= \\sum_{t=s+1}^{s+T}\\varepsilon_t\\varepsilon^T_{t-s}/T$ be the lag-$s$ ($s$ is a fixed positive integer) auto-covariance matrix of $\\varepsilon_t$. Since $X_T$ is not symmetric, we consider its singular values, which are the square roots of the eigenvalues of $X_TX^T_T$. Therefore, the purpose of this paper is to investigate the limiting behaviors of the eigenvalues of $X_TX^T_T$ in two aspects. First, we show that the empirical spectral distribution of its eigenvalues converges to a nonrandom limit $F$. Second, we establish the convergence of its largest eigenvalue to the right edge of $F$. Both results are derived using moment methods.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"135 1","pages":"1641-1666"},"PeriodicalIF":1.2000,"publicationDate":"2014-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Moment approach for singular values distribution of a large auto-covariance matrix\",\"authors\":\"Qinwen Wang, Jianfeng Yao\",\"doi\":\"10.1214/15-AIHP693\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let $(\\\\varepsilon_{t})_{t>0}$ be a sequence of independent real random vectors of $p$-dimension and let $X_T= \\\\sum_{t=s+1}^{s+T}\\\\varepsilon_t\\\\varepsilon^T_{t-s}/T$ be the lag-$s$ ($s$ is a fixed positive integer) auto-covariance matrix of $\\\\varepsilon_t$. Since $X_T$ is not symmetric, we consider its singular values, which are the square roots of the eigenvalues of $X_TX^T_T$. Therefore, the purpose of this paper is to investigate the limiting behaviors of the eigenvalues of $X_TX^T_T$ in two aspects. First, we show that the empirical spectral distribution of its eigenvalues converges to a nonrandom limit $F$. Second, we establish the convergence of its largest eigenvalue to the right edge of $F$. Both results are derived using moment methods.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"135 1\",\"pages\":\"1641-1666\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/15-AIHP693\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/15-AIHP693","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Moment approach for singular values distribution of a large auto-covariance matrix
Let $(\varepsilon_{t})_{t>0}$ be a sequence of independent real random vectors of $p$-dimension and let $X_T= \sum_{t=s+1}^{s+T}\varepsilon_t\varepsilon^T_{t-s}/T$ be the lag-$s$ ($s$ is a fixed positive integer) auto-covariance matrix of $\varepsilon_t$. Since $X_T$ is not symmetric, we consider its singular values, which are the square roots of the eigenvalues of $X_TX^T_T$. Therefore, the purpose of this paper is to investigate the limiting behaviors of the eigenvalues of $X_TX^T_T$ in two aspects. First, we show that the empirical spectral distribution of its eigenvalues converges to a nonrandom limit $F$. Second, we establish the convergence of its largest eigenvalue to the right edge of $F$. Both results are derived using moment methods.
期刊介绍:
The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.