{"title":"低成本,坚固的微流体通过银粘土挤压","authors":"E. Segura-Cárdenas, L. Velásquez-García","doi":"10.1109/powermems49317.2019.30773701484","DOIUrl":null,"url":null,"abstract":"We report novel, low-cost, high-temperature compatible, high-pressure compatible, and chemically resistant 3D printed microfluidics suitable for microreactors, heat exchangers, and other PowerMEMS applications. The devices are manufactured via silver clay extrusion; optimization of the printing method results in linearity between printed and computer-aided design (CAD) features, with ~11% (printed positive features, i.e. solid) and ~12% (printed negative features, i.e. voids) shrinking from CAD values after firing. Printed gaps as narrow as 200 μm were demonstrated, which are adequate to implement closed-channel microfluidics. A proof-of-concept microreactor that decomposes hydrogen peroxide was designed, fabricated, and characterized, demonstrating 86% efficiency with initial 30% hydrogen peroxide (w/w) in water concentration.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"93 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Low-Cost, Rugged Microfluidics via Silver Clay Extrusion\",\"authors\":\"E. Segura-Cárdenas, L. Velásquez-García\",\"doi\":\"10.1109/powermems49317.2019.30773701484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report novel, low-cost, high-temperature compatible, high-pressure compatible, and chemically resistant 3D printed microfluidics suitable for microreactors, heat exchangers, and other PowerMEMS applications. The devices are manufactured via silver clay extrusion; optimization of the printing method results in linearity between printed and computer-aided design (CAD) features, with ~11% (printed positive features, i.e. solid) and ~12% (printed negative features, i.e. voids) shrinking from CAD values after firing. Printed gaps as narrow as 200 μm were demonstrated, which are adequate to implement closed-channel microfluidics. A proof-of-concept microreactor that decomposes hydrogen peroxide was designed, fabricated, and characterized, demonstrating 86% efficiency with initial 30% hydrogen peroxide (w/w) in water concentration.\",\"PeriodicalId\":6648,\"journal\":{\"name\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"93 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/powermems49317.2019.30773701484\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/powermems49317.2019.30773701484","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-Cost, Rugged Microfluidics via Silver Clay Extrusion
We report novel, low-cost, high-temperature compatible, high-pressure compatible, and chemically resistant 3D printed microfluidics suitable for microreactors, heat exchangers, and other PowerMEMS applications. The devices are manufactured via silver clay extrusion; optimization of the printing method results in linearity between printed and computer-aided design (CAD) features, with ~11% (printed positive features, i.e. solid) and ~12% (printed negative features, i.e. voids) shrinking from CAD values after firing. Printed gaps as narrow as 200 μm were demonstrated, which are adequate to implement closed-channel microfluidics. A proof-of-concept microreactor that decomposes hydrogen peroxide was designed, fabricated, and characterized, demonstrating 86% efficiency with initial 30% hydrogen peroxide (w/w) in water concentration.