激光粉末床熔合中多轨迹沉积的研究:瞬态区域分析和扫描长度效应

S. Rauniyar, Subin Shrestha, K. Chou
{"title":"激光粉末床熔合中多轨迹沉积的研究:瞬态区域分析和扫描长度效应","authors":"S. Rauniyar, Subin Shrestha, K. Chou","doi":"10.1115/msec2022-85746","DOIUrl":null,"url":null,"abstract":"\n Laser powder bed fusion (L-PBF) additive manufacturing has been used to fabricate complex-shaped structures, which often consist of fine features. Due to transient process phenomena, there are differences in terms of the melt pool formation and the surface morphology depending upon the feature area and scan parameters. This study investigates the scan length effect on the surface morphology and the presence of transient length and width that may have a significant effect as the layer addition continues. For this purpose, four scan lengths (0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm) are used to fabricate six tracks with back-and-forth scanning. A full factorial design of experiments is used to form multi-track depositions with three levels of power (125 W, 160 W, and 195 W), two levels of scan speed (550 mm/s and 1000 mm/s), and four levels of hatch spacing (80 μm, 100 μm, 120 μm, and 140 μm). A white light interferometer is used to acquire the surface data, and MATLAB is used for surface topographical analysis. The results indicated that the scan length has a significant effect on the surface characteristics. The average height of multi-track deposits increases with the decrease of the scan length. Moreover, the transient length and width can be approximated based on the height variation along both the scan and transverse directions, respectively.","PeriodicalId":23676,"journal":{"name":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","volume":"199 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Investigation Into Multi-Track Deposition in Laser Powder-Bed Fusion: Transient Regions Analysis and Scan Length Effects\",\"authors\":\"S. Rauniyar, Subin Shrestha, K. Chou\",\"doi\":\"10.1115/msec2022-85746\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Laser powder bed fusion (L-PBF) additive manufacturing has been used to fabricate complex-shaped structures, which often consist of fine features. Due to transient process phenomena, there are differences in terms of the melt pool formation and the surface morphology depending upon the feature area and scan parameters. This study investigates the scan length effect on the surface morphology and the presence of transient length and width that may have a significant effect as the layer addition continues. For this purpose, four scan lengths (0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm) are used to fabricate six tracks with back-and-forth scanning. A full factorial design of experiments is used to form multi-track depositions with three levels of power (125 W, 160 W, and 195 W), two levels of scan speed (550 mm/s and 1000 mm/s), and four levels of hatch spacing (80 μm, 100 μm, 120 μm, and 140 μm). A white light interferometer is used to acquire the surface data, and MATLAB is used for surface topographical analysis. The results indicated that the scan length has a significant effect on the surface characteristics. The average height of multi-track deposits increases with the decrease of the scan length. Moreover, the transient length and width can be approximated based on the height variation along both the scan and transverse directions, respectively.\",\"PeriodicalId\":23676,\"journal\":{\"name\":\"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability\",\"volume\":\"199 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2022-85746\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 2: Manufacturing Processes; Manufacturing Systems; Nano/Micro/Meso Manufacturing; Quality and Reliability","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/msec2022-85746","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

激光粉末床熔融(L-PBF)增材制造已被用于制造复杂形状的结构,这些结构通常由精细的特征组成。由于瞬态过程现象的存在,不同的特征区域和扫描参数在熔池形成和表面形貌方面存在差异。本研究研究了扫描长度对表面形貌的影响,以及随着层的增加,可能产生显著影响的瞬态长度和宽度的存在。为此,使用四种扫描长度(0.25 mm, 0.5 mm, 1.0 mm和2.0 mm)来制造六个轨道,并进行来回扫描。采用全因子实验设计,在三种功率(125 W、160 W和195 W)、两种扫描速度(550 mm/s和1000 mm/s)和四种舱口间距(80 μm、100 μm、120 μm和140 μm)下形成多道沉积。利用白光干涉仪采集表面数据,利用MATLAB进行表面形貌分析。结果表明,扫描长度对表面特性有显著影响。随着扫描长度的减小,多道沉积体的平均高度增大。此外,瞬态长度和宽度可以分别根据扫描方向和横向高度的变化来近似计算。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Investigation Into Multi-Track Deposition in Laser Powder-Bed Fusion: Transient Regions Analysis and Scan Length Effects
Laser powder bed fusion (L-PBF) additive manufacturing has been used to fabricate complex-shaped structures, which often consist of fine features. Due to transient process phenomena, there are differences in terms of the melt pool formation and the surface morphology depending upon the feature area and scan parameters. This study investigates the scan length effect on the surface morphology and the presence of transient length and width that may have a significant effect as the layer addition continues. For this purpose, four scan lengths (0.25 mm, 0.5 mm, 1.0 mm, and 2.0 mm) are used to fabricate six tracks with back-and-forth scanning. A full factorial design of experiments is used to form multi-track depositions with three levels of power (125 W, 160 W, and 195 W), two levels of scan speed (550 mm/s and 1000 mm/s), and four levels of hatch spacing (80 μm, 100 μm, 120 μm, and 140 μm). A white light interferometer is used to acquire the surface data, and MATLAB is used for surface topographical analysis. The results indicated that the scan length has a significant effect on the surface characteristics. The average height of multi-track deposits increases with the decrease of the scan length. Moreover, the transient length and width can be approximated based on the height variation along both the scan and transverse directions, respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Physical and sensory properties of burgers affected by different dry ageing time of beef neck Inovacija proizvoda HRZZ projekta “Inovativni funkcionalni proizvodi od janjećeg mesa“ Bioaktivni peptidi u pršutima Samodostatnost u proizvodnji svinjskog mesa u Republici Hrvatskoj Policiklički aromatski ugljikovodici (PAH) u tradicionalno dimljenim mesnim proizvodima
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1