粘弹性管道中直接水锤压力特性试验研究

Xiaoying Zhang, Shengbin Chen, Tingyu Xu, Jian Zhang
{"title":"粘弹性管道中直接水锤压力特性试验研究","authors":"Xiaoying Zhang, Shengbin Chen, Tingyu Xu, Jian Zhang","doi":"10.2166/aqua.2022.005","DOIUrl":null,"url":null,"abstract":"\n With the increasing popularity of long-distance water supply projects and the development of materials technology, the variation of water hammer characteristics in the viscoelastic pipeline has become the focus of researchers. To find out the mechanism of water hammer in the viscoelastic pipe of both elastic and viscous properties, an experiment was set up to study the direct water hammer generated by rapid closure of the downstream valve in the polymethyl methacrylate (PMMA) pipe, with six flow velocities in nearly 70 tests. The experimental results showed that the maximum water hammer pressure generated in the viscoelastic pipe in all flow velocities was (20% at most) greater than the traditional value of Joukowsky's formula. A faster closing time of the valve caused a higher water hammer pressure. The difference in water hammer pressure generated between the fastest and the slowest closing time of the valve was 14–17% at each flow velocity. Based on the relationship between the stress and strain of the pipe wall in the viscoelastic pipe, the reason that the water hammer characteristic in the viscoelastic pipeline was different from the traditional value was explained. The study provides a reference for the mechanism of transient flow in viscoelastic pipelines.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Experimental study on pressure characteristics of direct water hammer in the viscoelastic pipeline\",\"authors\":\"Xiaoying Zhang, Shengbin Chen, Tingyu Xu, Jian Zhang\",\"doi\":\"10.2166/aqua.2022.005\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With the increasing popularity of long-distance water supply projects and the development of materials technology, the variation of water hammer characteristics in the viscoelastic pipeline has become the focus of researchers. To find out the mechanism of water hammer in the viscoelastic pipe of both elastic and viscous properties, an experiment was set up to study the direct water hammer generated by rapid closure of the downstream valve in the polymethyl methacrylate (PMMA) pipe, with six flow velocities in nearly 70 tests. The experimental results showed that the maximum water hammer pressure generated in the viscoelastic pipe in all flow velocities was (20% at most) greater than the traditional value of Joukowsky's formula. A faster closing time of the valve caused a higher water hammer pressure. The difference in water hammer pressure generated between the fastest and the slowest closing time of the valve was 14–17% at each flow velocity. Based on the relationship between the stress and strain of the pipe wall in the viscoelastic pipe, the reason that the water hammer characteristic in the viscoelastic pipeline was different from the traditional value was explained. The study provides a reference for the mechanism of transient flow in viscoelastic pipelines.\",\"PeriodicalId\":17666,\"journal\":{\"name\":\"Journal of Water Supply: Research and Technology-Aqua\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply: Research and Technology-Aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2022.005\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2022.005","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

随着长距离供水工程的日益普及和材料技术的发展,粘弹性管道中水锤特性的变化已成为研究人员关注的焦点。为探索弹性和粘性兼具的粘弹性管道中水锤的产生机理,在近70次试验中,对聚甲基丙烯酸甲酯(PMMA)管道中下游阀门快速关闭产生的直接水锤进行了实验研究。实验结果表明,在所有流速下,粘弹性管道中产生的最大水击压力比传统的Joukowsky公式值大(最多20%)。阀门关闭时间越快,水锤压力越高。各流速下阀门最快关闭时间与最慢关闭时间产生的水锤压力差为14-17%。根据粘弹性管道管壁应力与应变的关系,解释了粘弹性管道水锤特性不同于传统数值的原因。研究结果为粘弹性管道瞬态流动机理提供了参考。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental study on pressure characteristics of direct water hammer in the viscoelastic pipeline
With the increasing popularity of long-distance water supply projects and the development of materials technology, the variation of water hammer characteristics in the viscoelastic pipeline has become the focus of researchers. To find out the mechanism of water hammer in the viscoelastic pipe of both elastic and viscous properties, an experiment was set up to study the direct water hammer generated by rapid closure of the downstream valve in the polymethyl methacrylate (PMMA) pipe, with six flow velocities in nearly 70 tests. The experimental results showed that the maximum water hammer pressure generated in the viscoelastic pipe in all flow velocities was (20% at most) greater than the traditional value of Joukowsky's formula. A faster closing time of the valve caused a higher water hammer pressure. The difference in water hammer pressure generated between the fastest and the slowest closing time of the valve was 14–17% at each flow velocity. Based on the relationship between the stress and strain of the pipe wall in the viscoelastic pipe, the reason that the water hammer characteristic in the viscoelastic pipeline was different from the traditional value was explained. The study provides a reference for the mechanism of transient flow in viscoelastic pipelines.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of oxidative damage in Escherichia coli caused by epigallocatechin gallate (EGCG) in the presence of calcium ions Mechanistic action of pesticides on pests and their consequent effect on fishes and human health with remediation strategies Assessment of water demand and potential water sources to face future water scarcity of hilly regions A data quality assessment framework for drinking water distribution system water quality time series datasets Development and optimization of the dye removal process by Trichoderma reesei using starch effluent as a growth supplement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1