{"title":"碳同素异形体内电子和价电子的电子云密度测定","authors":"O. Kucherov","doi":"10.35745/afm2022v02.01.0002","DOIUrl":null,"url":null,"abstract":"Electron cloud densitometry of carbon allotropes is presented in this study. Carbon consists of two inner and four valence electrons. The valence electrons in carbon are hybridized or active. Each active valence electron builds a negatively charged shape due to their delocalization. It is proved that the active valence electron creates the van der Waals force, which bonds layers of crystalline graphite together. An easy quantum mechanical explanation of the electron cloud densitometry is given in this study. In accordance with this effect, an atom begins to illuminate, depicting its shape. Electron cloud densitometry images show the inner and valence electrons in the applied functional materials, such as activated coke, graphite, graphene, and diamond.","PeriodicalId":14985,"journal":{"name":"Journal of Applied Biomaterials & Functional Materials","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2022-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electron Cloud Densitometry of Inner and Valence Electrons in Carbon Allotropes\",\"authors\":\"O. Kucherov\",\"doi\":\"10.35745/afm2022v02.01.0002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Electron cloud densitometry of carbon allotropes is presented in this study. Carbon consists of two inner and four valence electrons. The valence electrons in carbon are hybridized or active. Each active valence electron builds a negatively charged shape due to their delocalization. It is proved that the active valence electron creates the van der Waals force, which bonds layers of crystalline graphite together. An easy quantum mechanical explanation of the electron cloud densitometry is given in this study. In accordance with this effect, an atom begins to illuminate, depicting its shape. Electron cloud densitometry images show the inner and valence electrons in the applied functional materials, such as activated coke, graphite, graphene, and diamond.\",\"PeriodicalId\":14985,\"journal\":{\"name\":\"Journal of Applied Biomaterials & Functional Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2022-03-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Biomaterials & Functional Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.35745/afm2022v02.01.0002\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Biomaterials & Functional Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.35745/afm2022v02.01.0002","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
Electron Cloud Densitometry of Inner and Valence Electrons in Carbon Allotropes
Electron cloud densitometry of carbon allotropes is presented in this study. Carbon consists of two inner and four valence electrons. The valence electrons in carbon are hybridized or active. Each active valence electron builds a negatively charged shape due to their delocalization. It is proved that the active valence electron creates the van der Waals force, which bonds layers of crystalline graphite together. An easy quantum mechanical explanation of the electron cloud densitometry is given in this study. In accordance with this effect, an atom begins to illuminate, depicting its shape. Electron cloud densitometry images show the inner and valence electrons in the applied functional materials, such as activated coke, graphite, graphene, and diamond.
期刊介绍:
The Journal of Applied Biomaterials & Functional Materials (JABFM) is an open access, peer-reviewed, international journal considering the publication of original contributions, reviews and editorials dealing with clinical and laboratory investigations in the fast growing field of biomaterial sciences and functional materials.
The areas covered by the journal will include:
• Biomaterials / Materials for biomedical applications
• Functional materials
• Hybrid and composite materials
• Soft materials
• Hydrogels
• Nanomaterials
• Gene delivery
• Nonodevices
• Metamaterials
• Active coatings
• Surface functionalization
• Tissue engineering
• Cell delivery/cell encapsulation systems
• 3D printing materials
• Material characterization
• Biomechanics