基于KL发散理论的多传感器系统虚假数据注入攻击设计

Dan Ye, Jiyan Wang
{"title":"基于KL发散理论的多传感器系统虚假数据注入攻击设计","authors":"Dan Ye, Jiyan Wang","doi":"10.1109/DDCLS.2019.8908983","DOIUrl":null,"url":null,"abstract":"In this paper, a security issue for Cyber-Physical Systems (CPSs) is considered. We analyse a multi-sensor system equipped with a remote state estimation and a set of detectors. From the perspective of a malicious attacker, one intends to modify the innovation sequence by injecting a Gaussian noise and further destroys the system performance. The state estimation error covariance recursion are derived to quantify the effect of an attack. Furthermore, we study the worst-case false data injection (FDI) attack scenario, where the maximal attack probability is limited by the threshold of Kullback-Leibler divergence detector. Finally, a numerical example is shown to demonstrate the effectiveness of the worst-case FDI attack.","PeriodicalId":6699,"journal":{"name":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"10 1","pages":"333-337"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"False Data Injection Attack Design in Multi-sensor Systems Based on KL Divergence Theory\",\"authors\":\"Dan Ye, Jiyan Wang\",\"doi\":\"10.1109/DDCLS.2019.8908983\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a security issue for Cyber-Physical Systems (CPSs) is considered. We analyse a multi-sensor system equipped with a remote state estimation and a set of detectors. From the perspective of a malicious attacker, one intends to modify the innovation sequence by injecting a Gaussian noise and further destroys the system performance. The state estimation error covariance recursion are derived to quantify the effect of an attack. Furthermore, we study the worst-case false data injection (FDI) attack scenario, where the maximal attack probability is limited by the threshold of Kullback-Leibler divergence detector. Finally, a numerical example is shown to demonstrate the effectiveness of the worst-case FDI attack.\",\"PeriodicalId\":6699,\"journal\":{\"name\":\"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"10 1\",\"pages\":\"333-337\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2019.8908983\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2019.8908983","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文研究了网络物理系统(cps)的安全问题。我们分析了一种配备了远程状态估计和一组检测器的多传感器系统。从恶意攻击者的角度来看,他们试图通过注入高斯噪声来修改创新序列,从而进一步破坏系统性能。导出了状态估计误差协方差递推来量化攻击的影响。进一步,我们研究了最坏情况下的虚假数据注入(FDI)攻击场景,其中最大攻击概率受到Kullback-Leibler散度检测器阈值的限制。最后,通过一个算例验证了最坏情况下FDI攻击的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
False Data Injection Attack Design in Multi-sensor Systems Based on KL Divergence Theory
In this paper, a security issue for Cyber-Physical Systems (CPSs) is considered. We analyse a multi-sensor system equipped with a remote state estimation and a set of detectors. From the perspective of a malicious attacker, one intends to modify the innovation sequence by injecting a Gaussian noise and further destroys the system performance. The state estimation error covariance recursion are derived to quantify the effect of an attack. Furthermore, we study the worst-case false data injection (FDI) attack scenario, where the maximal attack probability is limited by the threshold of Kullback-Leibler divergence detector. Finally, a numerical example is shown to demonstrate the effectiveness of the worst-case FDI attack.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Incremental Conductance Method Based on Fuzzy Control Simulation of the Array Signals Processing Based on Automatic Gain Control for Two-Wave Mixing Interferometer An Intelligent Supervision System of Environmental Pollution in Industrial Park Iterative learning control with optimal learning gain for recharging of Lithium-ion battery Integrated Position and Speed Control for PMSM Servo System Based on Extended State Observer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1