含非定常摩擦的管道自由表面瞬态流动的godunov型解

Yinying Hu, Ling Zhou, Tianwen Pan, Haoyu Fang, Yunjie Li, Deyou Liu
{"title":"含非定常摩擦的管道自由表面瞬态流动的godunov型解","authors":"Yinying Hu, Ling Zhou, Tianwen Pan, Haoyu Fang, Yunjie Li, Deyou Liu","doi":"10.2166/aqua.2022.161","DOIUrl":null,"url":null,"abstract":"\n A finite-volume second-order Godunov-type scheme (GTS) combining the unsteady friction model (UFM) is introduced to simulate free surface flow in pipelines. The exact solution to the Riemann problem calculates the mass and momentum fluxes while considering the Brunone unsteady friction factor. One simple boundary treatment with double virtual cells is proposed to ensure the whole computation domain with second-order accuracy. Results of various transient free-surface flows achieved by the proposed models are compared with exact solution, experimental data, the four-point implicit Preissmann scheme solution, as well as predictions by the classic Method of Characteristics (MOC). Results show that the proposed second-order GTS UFMs are accurate, efficient, and stable even for Courant numbers less than one and sparse grid. The four-point implicit Preissmann scheme may produce severe numerical attenuation in the case of large time steps and unsuitable weighting factors, while the MOC scheme may produce severe numerical attenuation in the case of a low Courant number and could not maintain mass conservation. The numerical simulations considering the unsteady friction factor are closer to the measured water depth variations. The effect of unsteady friction becomes more important as the initial water depth difference increases significantly.","PeriodicalId":17666,"journal":{"name":"Journal of Water Supply: Research and Technology-Aqua","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Godunov-type solutions for free surface transient flow in pipeline incorporating unsteady friction\",\"authors\":\"Yinying Hu, Ling Zhou, Tianwen Pan, Haoyu Fang, Yunjie Li, Deyou Liu\",\"doi\":\"10.2166/aqua.2022.161\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n A finite-volume second-order Godunov-type scheme (GTS) combining the unsteady friction model (UFM) is introduced to simulate free surface flow in pipelines. The exact solution to the Riemann problem calculates the mass and momentum fluxes while considering the Brunone unsteady friction factor. One simple boundary treatment with double virtual cells is proposed to ensure the whole computation domain with second-order accuracy. Results of various transient free-surface flows achieved by the proposed models are compared with exact solution, experimental data, the four-point implicit Preissmann scheme solution, as well as predictions by the classic Method of Characteristics (MOC). Results show that the proposed second-order GTS UFMs are accurate, efficient, and stable even for Courant numbers less than one and sparse grid. The four-point implicit Preissmann scheme may produce severe numerical attenuation in the case of large time steps and unsuitable weighting factors, while the MOC scheme may produce severe numerical attenuation in the case of a low Courant number and could not maintain mass conservation. The numerical simulations considering the unsteady friction factor are closer to the measured water depth variations. The effect of unsteady friction becomes more important as the initial water depth difference increases significantly.\",\"PeriodicalId\":17666,\"journal\":{\"name\":\"Journal of Water Supply: Research and Technology-Aqua\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water Supply: Research and Technology-Aqua\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/aqua.2022.161\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water Supply: Research and Technology-Aqua","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/aqua.2022.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

采用有限体积二阶godunov格式(GTS)结合非定常摩擦模型(UFM)来模拟管道内的自由表面流动。黎曼问题的精确解在考虑布鲁诺内非定常摩擦因数的情况下计算质量和动量通量。为了保证整个计算域具有二阶精度,提出了一种简单的双虚单元边界处理方法。将该模型得到的各种瞬态自由表面流动的结果与精确解、实验数据、四点隐式Preissmann格式解以及经典特征法(MOC)的预测结果进行了比较。结果表明,即使在科朗数小于1且网格稀疏的情况下,二阶GTS UFMs也具有准确、高效和稳定的特点。四点隐式Preissmann格式在时间步长较大、权重因子不合适的情况下会产生严重的数值衰减,而MOC格式在Courant数较低且不能保持质量守恒的情况下会产生严重的数值衰减。考虑非定常摩擦因数的数值模拟更接近实测水深变化。随着初始水深差的显著增大,非定常摩擦的影响变得更加重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Godunov-type solutions for free surface transient flow in pipeline incorporating unsteady friction
A finite-volume second-order Godunov-type scheme (GTS) combining the unsteady friction model (UFM) is introduced to simulate free surface flow in pipelines. The exact solution to the Riemann problem calculates the mass and momentum fluxes while considering the Brunone unsteady friction factor. One simple boundary treatment with double virtual cells is proposed to ensure the whole computation domain with second-order accuracy. Results of various transient free-surface flows achieved by the proposed models are compared with exact solution, experimental data, the four-point implicit Preissmann scheme solution, as well as predictions by the classic Method of Characteristics (MOC). Results show that the proposed second-order GTS UFMs are accurate, efficient, and stable even for Courant numbers less than one and sparse grid. The four-point implicit Preissmann scheme may produce severe numerical attenuation in the case of large time steps and unsuitable weighting factors, while the MOC scheme may produce severe numerical attenuation in the case of a low Courant number and could not maintain mass conservation. The numerical simulations considering the unsteady friction factor are closer to the measured water depth variations. The effect of unsteady friction becomes more important as the initial water depth difference increases significantly.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Mechanism of oxidative damage in Escherichia coli caused by epigallocatechin gallate (EGCG) in the presence of calcium ions Mechanistic action of pesticides on pests and their consequent effect on fishes and human health with remediation strategies Assessment of water demand and potential water sources to face future water scarcity of hilly regions A data quality assessment framework for drinking water distribution system water quality time series datasets Development and optimization of the dye removal process by Trichoderma reesei using starch effluent as a growth supplement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1