一种新的集成优化驱动设计框架,用于风敏建筑中最小重量的横向抗载系统

Zixiao Wang, A. Giaralis
{"title":"一种新的集成优化驱动设计框架,用于风敏建筑中最小重量的横向抗载系统","authors":"Zixiao Wang, A. Giaralis","doi":"10.1155/2023/3754773","DOIUrl":null,"url":null,"abstract":"The increasing rate of urbanization in recent decades has resulted in a global surge in the construction of slender high-rise buildings. These structures are prone to excessive wind-induced lateral vibrations in the crosswind direction owing to vortex shedding effects, causing occupant discomfort and, ultimately, dynamic serviceability failure. To reconcile the worldwide accelerated trend in constructing tall buildings with the sustainable building sector agenda, this paper proposes a novel bi-objective integrated design framework that leverages dynamic vibration absorbers (DVAs) to minimize the required material usage in the wind load-resisting structural systems (WLSSs) of occupant comfort-governed tall buildings. The framework couples structural sizing optimization for minimum-weight WLSS design (objective 1), with optimal DVA tuning for floor acceleration minimization to satisfy codified wind comfort design requirements by using the smallest DVA inertia (objective 2). Furthermore, a versatile numerical strategy is devised for the efficient solution of the proposed bi-objective optimization problem. For illustration, the framework is applied to a 15-storey steel building equipped with one of two different DVAs: a widely considered top-floor tuned mass damper (TMD) and an innovative ground-floor tuned inerter damper (TID). The derived Pareto optimal integrated (WLSS-plus-DVA) designs demonstrate that significant reduction in both structural steel usage and embodied carbon emissions can be achieved using either one of the two DVAs with moderate inertia. It is concluded that the proposed optimization-driven design framework and numerical solution strategy offer an alternative innovative approach to achieve material-efficient high-rise buildings under wind hazards.","PeriodicalId":22049,"journal":{"name":"Structural Control and Health Monitoring","volume":"2016 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Integrated Optimization-Driven Design Framework for Minimum-Weight Lateral-Load Resisting Systems in Wind-Sensitive Buildings Equipped with Dynamic Vibration Absorbers\",\"authors\":\"Zixiao Wang, A. Giaralis\",\"doi\":\"10.1155/2023/3754773\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The increasing rate of urbanization in recent decades has resulted in a global surge in the construction of slender high-rise buildings. These structures are prone to excessive wind-induced lateral vibrations in the crosswind direction owing to vortex shedding effects, causing occupant discomfort and, ultimately, dynamic serviceability failure. To reconcile the worldwide accelerated trend in constructing tall buildings with the sustainable building sector agenda, this paper proposes a novel bi-objective integrated design framework that leverages dynamic vibration absorbers (DVAs) to minimize the required material usage in the wind load-resisting structural systems (WLSSs) of occupant comfort-governed tall buildings. The framework couples structural sizing optimization for minimum-weight WLSS design (objective 1), with optimal DVA tuning for floor acceleration minimization to satisfy codified wind comfort design requirements by using the smallest DVA inertia (objective 2). Furthermore, a versatile numerical strategy is devised for the efficient solution of the proposed bi-objective optimization problem. For illustration, the framework is applied to a 15-storey steel building equipped with one of two different DVAs: a widely considered top-floor tuned mass damper (TMD) and an innovative ground-floor tuned inerter damper (TID). The derived Pareto optimal integrated (WLSS-plus-DVA) designs demonstrate that significant reduction in both structural steel usage and embodied carbon emissions can be achieved using either one of the two DVAs with moderate inertia. It is concluded that the proposed optimization-driven design framework and numerical solution strategy offer an alternative innovative approach to achieve material-efficient high-rise buildings under wind hazards.\",\"PeriodicalId\":22049,\"journal\":{\"name\":\"Structural Control and Health Monitoring\",\"volume\":\"2016 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Structural Control and Health Monitoring\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2023/3754773\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Control and Health Monitoring","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/3754773","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

近几十年来,城市化速度的加快导致了细长高层建筑在全球范围内的兴起。由于旋涡脱落效应,这些结构在侧风向上容易受到过度的风致横向振动,导致乘员不适,并最终导致动态使用失效。为了协调世界范围内高层建筑建设的加速趋势与可持续建筑领域的议程,本文提出了一种新的双目标集成设计框架,该框架利用动态减振器(DVAs)来最大限度地减少乘员舒适性控制的高层建筑的抗风结构系统(wlss)所需的材料使用。框架耦合了最小重量WLSS设计的结构尺寸优化(目标1),并通过使用最小DVA惯性来优化DVA调整以实现地板加速度最小化,以满足规范的风舒适设计要求(目标2)。此外,设计了一个通用的数值策略来有效解决所提出的双目标优化问题。例如,该框架应用于一座15层的钢结构建筑,该建筑配备了两种不同的dva之一:广泛考虑的顶层调谐质量阻尼器(TMD)和创新的底层调谐干涉阻尼器(TID)。推导出的帕累托最优集成(wlss + dva)设计表明,使用两种dva中的任何一种都可以实现结构钢材使用量和隐含碳排放量的显著减少。结果表明,所提出的优化驱动设计框架和数值求解策略为实现风害下的材料高效高层建筑提供了一种替代创新途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Novel Integrated Optimization-Driven Design Framework for Minimum-Weight Lateral-Load Resisting Systems in Wind-Sensitive Buildings Equipped with Dynamic Vibration Absorbers
The increasing rate of urbanization in recent decades has resulted in a global surge in the construction of slender high-rise buildings. These structures are prone to excessive wind-induced lateral vibrations in the crosswind direction owing to vortex shedding effects, causing occupant discomfort and, ultimately, dynamic serviceability failure. To reconcile the worldwide accelerated trend in constructing tall buildings with the sustainable building sector agenda, this paper proposes a novel bi-objective integrated design framework that leverages dynamic vibration absorbers (DVAs) to minimize the required material usage in the wind load-resisting structural systems (WLSSs) of occupant comfort-governed tall buildings. The framework couples structural sizing optimization for minimum-weight WLSS design (objective 1), with optimal DVA tuning for floor acceleration minimization to satisfy codified wind comfort design requirements by using the smallest DVA inertia (objective 2). Furthermore, a versatile numerical strategy is devised for the efficient solution of the proposed bi-objective optimization problem. For illustration, the framework is applied to a 15-storey steel building equipped with one of two different DVAs: a widely considered top-floor tuned mass damper (TMD) and an innovative ground-floor tuned inerter damper (TID). The derived Pareto optimal integrated (WLSS-plus-DVA) designs demonstrate that significant reduction in both structural steel usage and embodied carbon emissions can be achieved using either one of the two DVAs with moderate inertia. It is concluded that the proposed optimization-driven design framework and numerical solution strategy offer an alternative innovative approach to achieve material-efficient high-rise buildings under wind hazards.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Damage Detection and Localization at the Jacket Support of an Offshore Wind Turbine Using Transformer Models A Model-Based Bayesian Inference Approach for On-Board Monitoring of Rail Roughness Profiles: Application on Field Measurement Data of the Swiss Federal Railways Network Correction of Misalignment Errors in the Integrated GNSS and Accelerometer System for Structural Displacement Monitoring Mitigation of In-Plane Vibrations in Large-Scale Wind Turbine Blades with a Track Tuned Mass Damper Vortex-Induced Force Identification of a Long-Span Bridge Based on Field Measurement Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1