核孔复合结构的核膜动力学

R. Pidaparti, P. A. Sarma, A. Sinha, G. Vemuri, A. Gacy
{"title":"核孔复合结构的核膜动力学","authors":"R. Pidaparti, P. A. Sarma, A. Sinha, G. Vemuri, A. Gacy","doi":"10.1115/imece2001/bed-23162","DOIUrl":null,"url":null,"abstract":"\n The nuclear pore complex (NPC) is an excellent example of a bio-molecular motor, since it operates primarily via energy dependent processes, and performs some of the most vital functions required for the survival of a cell. In the presence of appropriate chemical stimuli, the NPC apparently opens or closes, like a gating mechanism, and permits the flow of material in to and out of the nucleus. An NPC, with typical dimensions of 100–200 nm, is a megadalton (MDa) heteromultimeric protein complex, which spans the nuclear envelope and is postulated to possess a transporter-containing central cylindrical body embedded between cytoplasmic and nucleoplasmic rings as shown in Fig.1. A cell has many, presumably identical, NPCs, each of which participates in the import and export of nuclear material from within the nucleus [1–2]. Exactly how this transport occurs through the NPC is an open question, and a very important one, with profound implications for nanoscale devices for fluidic transport, genetic engineering and targeted drug delivery.","PeriodicalId":7238,"journal":{"name":"Advances in Bioengineering","volume":"2598 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2001-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Nuclear Membrane Dynamics of a Nuclear Pore Complex Structure\",\"authors\":\"R. Pidaparti, P. A. Sarma, A. Sinha, G. Vemuri, A. Gacy\",\"doi\":\"10.1115/imece2001/bed-23162\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The nuclear pore complex (NPC) is an excellent example of a bio-molecular motor, since it operates primarily via energy dependent processes, and performs some of the most vital functions required for the survival of a cell. In the presence of appropriate chemical stimuli, the NPC apparently opens or closes, like a gating mechanism, and permits the flow of material in to and out of the nucleus. An NPC, with typical dimensions of 100–200 nm, is a megadalton (MDa) heteromultimeric protein complex, which spans the nuclear envelope and is postulated to possess a transporter-containing central cylindrical body embedded between cytoplasmic and nucleoplasmic rings as shown in Fig.1. A cell has many, presumably identical, NPCs, each of which participates in the import and export of nuclear material from within the nucleus [1–2]. Exactly how this transport occurs through the NPC is an open question, and a very important one, with profound implications for nanoscale devices for fluidic transport, genetic engineering and targeted drug delivery.\",\"PeriodicalId\":7238,\"journal\":{\"name\":\"Advances in Bioengineering\",\"volume\":\"2598 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2001-11-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Bioengineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2001/bed-23162\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2001/bed-23162","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

核孔复合体(NPC)是生物分子马达的一个很好的例子,因为它主要通过能量依赖过程运作,并执行细胞生存所需的一些最重要的功能。在适当的化学刺激下,NPC明显地打开或关闭,就像一个门控机制,并允许物质流入和流出核。NPC的典型尺寸为100 - 200nm,是一种巨道尔顿(MDa)异多聚蛋白复合物,其跨越核膜,并被假设具有一个包含转运蛋白的中心圆柱体,嵌入细胞质和核质环之间,如图1所示。一个细胞有许多可能相同的npc,每个npc都参与细胞核内核物质的输入和输出[1-2]。这种传输究竟是如何通过NPC发生的,这是一个悬而未决的问题,也是一个非常重要的问题,对流体传输、基因工程和靶向药物输送的纳米级设备具有深远的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nuclear Membrane Dynamics of a Nuclear Pore Complex Structure
The nuclear pore complex (NPC) is an excellent example of a bio-molecular motor, since it operates primarily via energy dependent processes, and performs some of the most vital functions required for the survival of a cell. In the presence of appropriate chemical stimuli, the NPC apparently opens or closes, like a gating mechanism, and permits the flow of material in to and out of the nucleus. An NPC, with typical dimensions of 100–200 nm, is a megadalton (MDa) heteromultimeric protein complex, which spans the nuclear envelope and is postulated to possess a transporter-containing central cylindrical body embedded between cytoplasmic and nucleoplasmic rings as shown in Fig.1. A cell has many, presumably identical, NPCs, each of which participates in the import and export of nuclear material from within the nucleus [1–2]. Exactly how this transport occurs through the NPC is an open question, and a very important one, with profound implications for nanoscale devices for fluidic transport, genetic engineering and targeted drug delivery.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Graft Material on Anterior Cruciate Ligament Reconstruction: A 3D Computational Simulation A “Point Cloud” Approach in Superelastic Stent Design Biomechanical Properties of Grown Cartilage Are Decreased in the Presence of Retinoic Acid, Chondroitinase ABC and Ibuprofen Building Cellular Microenvironments to Control Capillary Endothelial Cell Proliferation, Death, and Differentiation Mechanical Factors Can Influence the Gender Differences in the Incidence of Non-Contact Injuries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1