统一基于边界和区域的测地线主动跟踪信息

N. Paragios, R. Deriche
{"title":"统一基于边界和区域的测地线主动跟踪信息","authors":"N. Paragios, R. Deriche","doi":"10.1109/CVPR.1999.784648","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of tracking several non-rigid objects over a sequence of frames acquired from a static observer using boundary and region-based information under a coupled geodesic active contour framework. Given the current frame, a statistical analysis is performed on the observed difference frame which provides a measurement that distinguishes between the static and mobile regions in terms of conditional probabilities. An objective function is defined that integrates boundary-based and region-based module by seeking curves that attract the object boundaries and maximize the a posteriori segmentation probability on the interior curve regions with respect to intensity and motion properties. This function is minimized using a gradient descent method. The associated Euler-Lagrange PDE is implemented using a Level-Set approach, where a very fast front propagation algorithm evolves the initial curve towards the final tracking result. Very promising experimental results are provided using real video sequences.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"127 1","pages":"300-305 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":"{\"title\":\"Unifying boundary and region-based information for geodesic active tracking\",\"authors\":\"N. Paragios, R. Deriche\",\"doi\":\"10.1109/CVPR.1999.784648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of tracking several non-rigid objects over a sequence of frames acquired from a static observer using boundary and region-based information under a coupled geodesic active contour framework. Given the current frame, a statistical analysis is performed on the observed difference frame which provides a measurement that distinguishes between the static and mobile regions in terms of conditional probabilities. An objective function is defined that integrates boundary-based and region-based module by seeking curves that attract the object boundaries and maximize the a posteriori segmentation probability on the interior curve regions with respect to intensity and motion properties. This function is minimized using a gradient descent method. The associated Euler-Lagrange PDE is implemented using a Level-Set approach, where a very fast front propagation algorithm evolves the initial curve towards the final tracking result. Very promising experimental results are provided using real video sequences.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"127 1\",\"pages\":\"300-305 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"110\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 110

摘要

本文解决了在耦合测地线主动轮廓框架下,利用基于边界和区域的信息从静态观测器获取的一系列帧上跟踪多个非刚性物体的问题。给定当前帧,对所观察到的差帧进行统计分析,该差帧提供了根据条件概率区分静态区域和移动区域的测量。通过寻找吸引目标边界的曲线,并根据强度和运动属性最大化内部曲线区域的后验分割概率,定义了一个基于边界和基于区域的模块相结合的目标函数。该函数使用梯度下降法最小化。相关的Euler-Lagrange PDE使用Level-Set方法实现,其中非常快速的前传播算法将初始曲线演变为最终跟踪结果。利用真实的视频序列,得到了很有希望的实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Unifying boundary and region-based information for geodesic active tracking
This paper addresses the problem of tracking several non-rigid objects over a sequence of frames acquired from a static observer using boundary and region-based information under a coupled geodesic active contour framework. Given the current frame, a statistical analysis is performed on the observed difference frame which provides a measurement that distinguishes between the static and mobile regions in terms of conditional probabilities. An objective function is defined that integrates boundary-based and region-based module by seeking curves that attract the object boundaries and maximize the a posteriori segmentation probability on the interior curve regions with respect to intensity and motion properties. This function is minimized using a gradient descent method. The associated Euler-Lagrange PDE is implemented using a Level-Set approach, where a very fast front propagation algorithm evolves the initial curve towards the final tracking result. Very promising experimental results are provided using real video sequences.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Visual signature verification using affine arc-length A novel Bayesian method for fitting parametric and non-parametric models to noisy data Material classification for 3D objects in aerial hyperspectral images Deformable template and distribution mixture-based data modeling for the endocardial contour tracking in an echographic sequence Applying perceptual grouping to content-based image retrieval: building images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1