{"title":"统一基于边界和区域的测地线主动跟踪信息","authors":"N. Paragios, R. Deriche","doi":"10.1109/CVPR.1999.784648","DOIUrl":null,"url":null,"abstract":"This paper addresses the problem of tracking several non-rigid objects over a sequence of frames acquired from a static observer using boundary and region-based information under a coupled geodesic active contour framework. Given the current frame, a statistical analysis is performed on the observed difference frame which provides a measurement that distinguishes between the static and mobile regions in terms of conditional probabilities. An objective function is defined that integrates boundary-based and region-based module by seeking curves that attract the object boundaries and maximize the a posteriori segmentation probability on the interior curve regions with respect to intensity and motion properties. This function is minimized using a gradient descent method. The associated Euler-Lagrange PDE is implemented using a Level-Set approach, where a very fast front propagation algorithm evolves the initial curve towards the final tracking result. Very promising experimental results are provided using real video sequences.","PeriodicalId":20644,"journal":{"name":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","volume":"127 1","pages":"300-305 Vol. 2"},"PeriodicalIF":0.0000,"publicationDate":"1999-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"110","resultStr":"{\"title\":\"Unifying boundary and region-based information for geodesic active tracking\",\"authors\":\"N. Paragios, R. Deriche\",\"doi\":\"10.1109/CVPR.1999.784648\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper addresses the problem of tracking several non-rigid objects over a sequence of frames acquired from a static observer using boundary and region-based information under a coupled geodesic active contour framework. Given the current frame, a statistical analysis is performed on the observed difference frame which provides a measurement that distinguishes between the static and mobile regions in terms of conditional probabilities. An objective function is defined that integrates boundary-based and region-based module by seeking curves that attract the object boundaries and maximize the a posteriori segmentation probability on the interior curve regions with respect to intensity and motion properties. This function is minimized using a gradient descent method. The associated Euler-Lagrange PDE is implemented using a Level-Set approach, where a very fast front propagation algorithm evolves the initial curve towards the final tracking result. Very promising experimental results are provided using real video sequences.\",\"PeriodicalId\":20644,\"journal\":{\"name\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"volume\":\"127 1\",\"pages\":\"300-305 Vol. 2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"110\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.1999.784648\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.1999.784648","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Unifying boundary and region-based information for geodesic active tracking
This paper addresses the problem of tracking several non-rigid objects over a sequence of frames acquired from a static observer using boundary and region-based information under a coupled geodesic active contour framework. Given the current frame, a statistical analysis is performed on the observed difference frame which provides a measurement that distinguishes between the static and mobile regions in terms of conditional probabilities. An objective function is defined that integrates boundary-based and region-based module by seeking curves that attract the object boundaries and maximize the a posteriori segmentation probability on the interior curve regions with respect to intensity and motion properties. This function is minimized using a gradient descent method. The associated Euler-Lagrange PDE is implemented using a Level-Set approach, where a very fast front propagation algorithm evolves the initial curve towards the final tracking result. Very promising experimental results are provided using real video sequences.