{"title":"将拓扑优化嵌入条件生成对抗网络的生成设计","authors":"Zhichao Wang, S. Melkote, David Rosen","doi":"10.1115/1.4062980","DOIUrl":null,"url":null,"abstract":"\n Generative design (GD) techniques have been proposed to generate numerous designs at early design stages for ideation and exploration purposes. Previous research on GD using deep neural networks required tedious iterations between the neural network and design optimization, as well as post-processing to generate functional designs. Additionally, design constraints such as volume fraction could not be enforced. In this paper, a two-stage non-iterative formulation is proposed to overcome these limitations. In the first stage, a conditional generative adversarial network (cGAN) is utilized to control design parameters. In the second stage, topology optimization (TO) is embedded into cGAN (cGAN+TO) to ensure that desired functionality is achieved. Tests on different combinations of loss terms and different parameter settings within topology optimization demonstrated the diversity of generated designs. Further study showed that cGAN+TO can be extended to different load and boundary conditions by modifying these parameters in the second stage of training without having to retrain the first stage. Results demonstrate that GD can be realized efficiently and robustly by cGAN+TO.","PeriodicalId":50137,"journal":{"name":"Journal of Mechanical Design","volume":"4 1","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Design by Embedding Topology Optimization into Conditional Generative Adversarial Network\",\"authors\":\"Zhichao Wang, S. Melkote, David Rosen\",\"doi\":\"10.1115/1.4062980\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Generative design (GD) techniques have been proposed to generate numerous designs at early design stages for ideation and exploration purposes. Previous research on GD using deep neural networks required tedious iterations between the neural network and design optimization, as well as post-processing to generate functional designs. Additionally, design constraints such as volume fraction could not be enforced. In this paper, a two-stage non-iterative formulation is proposed to overcome these limitations. In the first stage, a conditional generative adversarial network (cGAN) is utilized to control design parameters. In the second stage, topology optimization (TO) is embedded into cGAN (cGAN+TO) to ensure that desired functionality is achieved. Tests on different combinations of loss terms and different parameter settings within topology optimization demonstrated the diversity of generated designs. Further study showed that cGAN+TO can be extended to different load and boundary conditions by modifying these parameters in the second stage of training without having to retrain the first stage. Results demonstrate that GD can be realized efficiently and robustly by cGAN+TO.\",\"PeriodicalId\":50137,\"journal\":{\"name\":\"Journal of Mechanical Design\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2023-07-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Mechanical Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4062980\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Mechanical Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1115/1.4062980","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Generative Design by Embedding Topology Optimization into Conditional Generative Adversarial Network
Generative design (GD) techniques have been proposed to generate numerous designs at early design stages for ideation and exploration purposes. Previous research on GD using deep neural networks required tedious iterations between the neural network and design optimization, as well as post-processing to generate functional designs. Additionally, design constraints such as volume fraction could not be enforced. In this paper, a two-stage non-iterative formulation is proposed to overcome these limitations. In the first stage, a conditional generative adversarial network (cGAN) is utilized to control design parameters. In the second stage, topology optimization (TO) is embedded into cGAN (cGAN+TO) to ensure that desired functionality is achieved. Tests on different combinations of loss terms and different parameter settings within topology optimization demonstrated the diversity of generated designs. Further study showed that cGAN+TO can be extended to different load and boundary conditions by modifying these parameters in the second stage of training without having to retrain the first stage. Results demonstrate that GD can be realized efficiently and robustly by cGAN+TO.
期刊介绍:
The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.
Scope: The Journal of Mechanical Design (JMD) serves the broad design community as the venue for scholarly, archival research in all aspects of the design activity with emphasis on design synthesis. JMD has traditionally served the ASME Design Engineering Division and its technical committees, but it welcomes contributions from all areas of design with emphasis on synthesis. JMD communicates original contributions, primarily in the form of research articles of considerable depth, but also technical briefs, design innovation papers, book reviews, and editorials.