基于峰度和偏度的高斯混合模型选择准则

L. Wang, Jinwen Ma
{"title":"基于峰度和偏度的高斯混合模型选择准则","authors":"L. Wang, Jinwen Ma","doi":"10.1109/BMEI.2009.5305528","DOIUrl":null,"url":null,"abstract":"The Gaussian mixture model is a powerful statistical tool in data modeling and analysis. Generally, the EM algorithm is utilized to learn the parameters of the Gaussian mixture. However, the EM algorithm is based on the maximum likelihood framework and cannot determine the number of Gaussians for a sample data set. In order to overcome this problem, we propose a new model selection criterion based on the kurtosis and skewness of the estimated Gaussians. Moreover, a new greedy EM algorithm is constructed via the kurtosis and skewness based criterion. The simulation results show that the proposed model selection criterion is efficient and the new greedy EM algorithm is feasible.","PeriodicalId":6389,"journal":{"name":"2009 2nd International Conference on Biomedical Engineering and Informatics","volume":"49 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2009-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"A Kurtosis and Skewness Based Criterion for Model Selection on Gaussian Mixture\",\"authors\":\"L. Wang, Jinwen Ma\",\"doi\":\"10.1109/BMEI.2009.5305528\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Gaussian mixture model is a powerful statistical tool in data modeling and analysis. Generally, the EM algorithm is utilized to learn the parameters of the Gaussian mixture. However, the EM algorithm is based on the maximum likelihood framework and cannot determine the number of Gaussians for a sample data set. In order to overcome this problem, we propose a new model selection criterion based on the kurtosis and skewness of the estimated Gaussians. Moreover, a new greedy EM algorithm is constructed via the kurtosis and skewness based criterion. The simulation results show that the proposed model selection criterion is efficient and the new greedy EM algorithm is feasible.\",\"PeriodicalId\":6389,\"journal\":{\"name\":\"2009 2nd International Conference on Biomedical Engineering and Informatics\",\"volume\":\"49 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 2nd International Conference on Biomedical Engineering and Informatics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/BMEI.2009.5305528\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 2nd International Conference on Biomedical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BMEI.2009.5305528","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

高斯混合模型是一种强大的数据建模和分析统计工具。通常采用EM算法来学习高斯混合物的参数。然而,EM算法基于极大似然框架,无法确定样本数据集的高斯数。为了克服这一问题,我们提出了一种新的基于估计高斯分布峰度和偏度的模型选择准则。此外,基于峰度和偏度准则构造了一种新的贪婪EM算法。仿真结果表明,所提出的模型选择准则是有效的,新的贪婪EM算法是可行的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Kurtosis and Skewness Based Criterion for Model Selection on Gaussian Mixture
The Gaussian mixture model is a powerful statistical tool in data modeling and analysis. Generally, the EM algorithm is utilized to learn the parameters of the Gaussian mixture. However, the EM algorithm is based on the maximum likelihood framework and cannot determine the number of Gaussians for a sample data set. In order to overcome this problem, we propose a new model selection criterion based on the kurtosis and skewness of the estimated Gaussians. Moreover, a new greedy EM algorithm is constructed via the kurtosis and skewness based criterion. The simulation results show that the proposed model selection criterion is efficient and the new greedy EM algorithm is feasible.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Approach for Blood Vessel Edge Detection in Retinal Images Skin Response During Irradiation by Intense Pulsed Light Based on Optical Imaging Technology and Histology Physical Properties of LYSO Scintillator for NN-PET Detectors A High Security Framework for SMS An Efficient Antenna Selection Algorithm for MIMO Systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1