扭结对膜和薄膜中铁弹性畴壁相互作用能的影响

IF 3.3 3区 物理与天体物理 Q2 PHYSICS, CONDENSED MATTER Superlattices and Microstructures Pub Date : 2023-08-11 DOI:10.20517/microstructures.2023.28
Guangming Lu, Kimura Hideo, Xiangdong Ding, Zhijun Xu, R. Chu, G. Nataf, E. Salje
{"title":"扭结对膜和薄膜中铁弹性畴壁相互作用能的影响","authors":"Guangming Lu, Kimura Hideo, Xiangdong Ding, Zhijun Xu, R. Chu, G. Nataf, E. Salje","doi":"10.20517/microstructures.2023.28","DOIUrl":null,"url":null,"abstract":"In thin samples, such as membranes, kinks inside ferroelastic domain walls interact through “dipolar” interactions following a 1/d 2 decay, where d is the distance between the walls. Simultaneously, the samples relax by bending. Bending is not possible in thick samples or can be suppressed in thin films deposited on a rigid substrate. In these cases, wall-wall interactions decay as 1/d , as monopoles would do. In free-standing samples, we show a wide crossover regime between “dipolar” 1/d 2 interactions and “monopolar” 1/d interactions. The surfaces of all samples show characteristic relaxation patterns near the kink, which consists of ridges and valleys. We identify the sample bending as the relevant image force that emanates from kinks inside walls in thin samples. When samples are prevented from bending by being attached to a substrate, the dipolar force is replaced by “monopolar” forces, even in thin samples. These results are important for transmission electron microscopy imaging, where the typical sample size is in the dipolar range while it is in the monopolar range for the bulk.","PeriodicalId":22044,"journal":{"name":"Superlattices and Microstructures","volume":"115 1","pages":""},"PeriodicalIF":3.3000,"publicationDate":"2023-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of kinks on the interaction energy between ferroelastic domain walls in membranes and thin films\",\"authors\":\"Guangming Lu, Kimura Hideo, Xiangdong Ding, Zhijun Xu, R. Chu, G. Nataf, E. Salje\",\"doi\":\"10.20517/microstructures.2023.28\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In thin samples, such as membranes, kinks inside ferroelastic domain walls interact through “dipolar” interactions following a 1/d 2 decay, where d is the distance between the walls. Simultaneously, the samples relax by bending. Bending is not possible in thick samples or can be suppressed in thin films deposited on a rigid substrate. In these cases, wall-wall interactions decay as 1/d , as monopoles would do. In free-standing samples, we show a wide crossover regime between “dipolar” 1/d 2 interactions and “monopolar” 1/d interactions. The surfaces of all samples show characteristic relaxation patterns near the kink, which consists of ridges and valleys. We identify the sample bending as the relevant image force that emanates from kinks inside walls in thin samples. When samples are prevented from bending by being attached to a substrate, the dipolar force is replaced by “monopolar” forces, even in thin samples. These results are important for transmission electron microscopy imaging, where the typical sample size is in the dipolar range while it is in the monopolar range for the bulk.\",\"PeriodicalId\":22044,\"journal\":{\"name\":\"Superlattices and Microstructures\",\"volume\":\"115 1\",\"pages\":\"\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2023-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Superlattices and Microstructures\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.20517/microstructures.2023.28\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, CONDENSED MATTER\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Superlattices and Microstructures","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.20517/microstructures.2023.28","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, CONDENSED MATTER","Score":null,"Total":0}
引用次数: 0

摘要

在薄膜等薄样品中,铁弹性畴壁内的扭结通过“偶极”相互作用进行1/d 2衰变,其中d是壁之间的距离。同时,试样因弯曲而松弛。在厚样品中不可能发生弯曲,或者在沉积在刚性衬底上的薄膜中可以抑制弯曲。在这些情况下,壁-壁相互作用衰减为1/d,就像单极子那样。在独立样品中,我们显示了“偶极”1/d相互作用和“单极”1/d相互作用之间的广泛交叉机制。所有样品的表面都显示出扭结附近的特征松弛模式,扭结由脊和谷组成。我们将样品弯曲识别为薄样品中壁内扭结产生的相关图像力。当样品被附着在衬底上防止弯曲时,偶极力被“单极”力所取代,即使在薄样品中也是如此。这些结果是重要的透射电子显微镜成像,其中典型的样品尺寸是在偶极子范围内,而它是在单极子范围内的主体。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of kinks on the interaction energy between ferroelastic domain walls in membranes and thin films
In thin samples, such as membranes, kinks inside ferroelastic domain walls interact through “dipolar” interactions following a 1/d 2 decay, where d is the distance between the walls. Simultaneously, the samples relax by bending. Bending is not possible in thick samples or can be suppressed in thin films deposited on a rigid substrate. In these cases, wall-wall interactions decay as 1/d , as monopoles would do. In free-standing samples, we show a wide crossover regime between “dipolar” 1/d 2 interactions and “monopolar” 1/d interactions. The surfaces of all samples show characteristic relaxation patterns near the kink, which consists of ridges and valleys. We identify the sample bending as the relevant image force that emanates from kinks inside walls in thin samples. When samples are prevented from bending by being attached to a substrate, the dipolar force is replaced by “monopolar” forces, even in thin samples. These results are important for transmission electron microscopy imaging, where the typical sample size is in the dipolar range while it is in the monopolar range for the bulk.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Superlattices and Microstructures
Superlattices and Microstructures 物理-物理:凝聚态物理
CiteScore
6.10
自引率
3.20%
发文量
35
审稿时长
2.8 months
期刊介绍: Micro and Nanostructures is a journal disseminating the science and technology of micro-structures and nano-structures in materials and their devices, including individual and collective use of semiconductors, metals and insulators for the exploitation of their unique properties. The journal hosts papers dealing with fundamental and applied experimental research as well as theoretical studies. Fields of interest, including emerging ones, cover: • Novel micro and nanostructures • Nanomaterials (nanowires, nanodots, 2D materials ) and devices • Synthetic heterostructures • Plasmonics • Micro and nano-defects in materials (semiconductor, metal and insulators) • Surfaces and interfaces of thin films In addition to Research Papers, the journal aims at publishing Topical Reviews providing insights into rapidly evolving or more mature fields. Written by leading researchers in their respective fields, those articles are commissioned by the Editorial Board. Formerly known as Superlattices and Microstructures, with a 2021 IF of 3.22 and 2021 CiteScore of 5.4
期刊最新文献
Temperature dependence of dielectric nonlinearity of BaTiO3 ceramics Influence of hydrogel and porous scaffold on the magnetic thermal property and anticancer effect of Fe3O4 nanoparticles Magnetic structures and correlated physical properties in antiperovskites Cryogenic atom probe tomography and its applications: a review Scanning transmission electron microscopy for advanced characterization of ferroic materials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1