M. Meireles, I. C. Debien, A. A. Rigo, M. Corazza, M. Mazutti, J. V. Oliveira
{"title":"l -乳酸+(丙烷+乙醇)和l -乳酸+(二氧化碳+乙醇)体系高压平衡数据的热力学建模","authors":"M. Meireles, I. C. Debien, A. A. Rigo, M. Corazza, M. Mazutti, J. V. Oliveira","doi":"10.2174/1874123101509010001","DOIUrl":null,"url":null,"abstract":"This short communication reports the thermodynamic modeling of high-pressure equilibrium data (cloud points) for the systems L-lactic acid + (propane + ethanol) and L-lactic acid + (carbon dioxide + ethanol) from 323.15 K to 353.15 K and at pressures up to 25 MPa.The experimental data were modeled using the Peng-Robinson equation of state with the classical van der Waals quadratic mixing rule (PR-vdW2) and with the Wong-Sandler mixing rule (PR- WS). It is shown that the PR-vdW2 and PR-WS models were both able to satisfactorily represent the phase behavior of the system L-lactic acid + (carbon dioxide + ethanol). However, for the system L-lactic acid + (propane + ethanol), the PR-vdW2 model was not able to appropriately describe its phase behavior.","PeriodicalId":22933,"journal":{"name":"The Open Chemical Engineering Journal","volume":"140 1","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2015-02-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic Modeling of High-pressure Equilibrium Data for the Systems L-lactic Acid + (Propane + Ethanol) and L-lactic Acid + (Carbon Dioxide + Ethanol)\",\"authors\":\"M. Meireles, I. C. Debien, A. A. Rigo, M. Corazza, M. Mazutti, J. V. Oliveira\",\"doi\":\"10.2174/1874123101509010001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This short communication reports the thermodynamic modeling of high-pressure equilibrium data (cloud points) for the systems L-lactic acid + (propane + ethanol) and L-lactic acid + (carbon dioxide + ethanol) from 323.15 K to 353.15 K and at pressures up to 25 MPa.The experimental data were modeled using the Peng-Robinson equation of state with the classical van der Waals quadratic mixing rule (PR-vdW2) and with the Wong-Sandler mixing rule (PR- WS). It is shown that the PR-vdW2 and PR-WS models were both able to satisfactorily represent the phase behavior of the system L-lactic acid + (carbon dioxide + ethanol). However, for the system L-lactic acid + (propane + ethanol), the PR-vdW2 model was not able to appropriately describe its phase behavior.\",\"PeriodicalId\":22933,\"journal\":{\"name\":\"The Open Chemical Engineering Journal\",\"volume\":\"140 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-02-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Open Chemical Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1874123101509010001\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Open Chemical Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1874123101509010001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Thermodynamic Modeling of High-pressure Equilibrium Data for the Systems L-lactic Acid + (Propane + Ethanol) and L-lactic Acid + (Carbon Dioxide + Ethanol)
This short communication reports the thermodynamic modeling of high-pressure equilibrium data (cloud points) for the systems L-lactic acid + (propane + ethanol) and L-lactic acid + (carbon dioxide + ethanol) from 323.15 K to 353.15 K and at pressures up to 25 MPa.The experimental data were modeled using the Peng-Robinson equation of state with the classical van der Waals quadratic mixing rule (PR-vdW2) and with the Wong-Sandler mixing rule (PR- WS). It is shown that the PR-vdW2 and PR-WS models were both able to satisfactorily represent the phase behavior of the system L-lactic acid + (carbon dioxide + ethanol). However, for the system L-lactic acid + (propane + ethanol), the PR-vdW2 model was not able to appropriately describe its phase behavior.