{"title":"碳纳米管-聚吡咯-壳聚糖层微波谐振器传感器检测萘丙酰胺","authors":"A. Mohammadi, A. Sadrolhosseini, Hamid Nazeri","doi":"10.22104/AET.2017.453","DOIUrl":null,"url":null,"abstract":"This paper presents the design and fabrication of proximity coupled feed disk resonator coated with Multi Walled Carbon Nanotubes (MWCNTs) and Polypyrrole-Chitosan (PPy-CHI) layers as a napropamide sensor. Computer Simulation Technology (CST) microwave studio was used to obtain the best design of disk resonator and feed line position in 5 GHz resonant frequency. Also, MWCNTs - PPy-CHI layers were coated on the disk resonator using electric field deposition and chemical interaction between sensing layer and napropamide was investigated by Fourier Transform Infrared Spectroscopy (FT-IR). The evaluation of the system was performed using different concentrations of commercial napropamide and pure napropamide at room temperature (25 0C). Experimental results prove that proximity coupled feed disk resonator coated with MWCNTs-PPy-CHI layers is a simple, fast (Measurement- time=5 seconds), accurate (as low as 0.1 ppm), low cost and it has the potential of fabrication as a portable instrumentation system for detecting pesticides in water and soil.","PeriodicalId":7295,"journal":{"name":"Advances in environmental science and technology","volume":"43 1","pages":"185-195"},"PeriodicalIF":0.0000,"publicationDate":"2017-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Detection of napropamide by microwave resonator sensor using carbon nanotube – polypyrrole- chitosan layer\",\"authors\":\"A. Mohammadi, A. Sadrolhosseini, Hamid Nazeri\",\"doi\":\"10.22104/AET.2017.453\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents the design and fabrication of proximity coupled feed disk resonator coated with Multi Walled Carbon Nanotubes (MWCNTs) and Polypyrrole-Chitosan (PPy-CHI) layers as a napropamide sensor. Computer Simulation Technology (CST) microwave studio was used to obtain the best design of disk resonator and feed line position in 5 GHz resonant frequency. Also, MWCNTs - PPy-CHI layers were coated on the disk resonator using electric field deposition and chemical interaction between sensing layer and napropamide was investigated by Fourier Transform Infrared Spectroscopy (FT-IR). The evaluation of the system was performed using different concentrations of commercial napropamide and pure napropamide at room temperature (25 0C). Experimental results prove that proximity coupled feed disk resonator coated with MWCNTs-PPy-CHI layers is a simple, fast (Measurement- time=5 seconds), accurate (as low as 0.1 ppm), low cost and it has the potential of fabrication as a portable instrumentation system for detecting pesticides in water and soil.\",\"PeriodicalId\":7295,\"journal\":{\"name\":\"Advances in environmental science and technology\",\"volume\":\"43 1\",\"pages\":\"185-195\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in environmental science and technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22104/AET.2017.453\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in environmental science and technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22104/AET.2017.453","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Detection of napropamide by microwave resonator sensor using carbon nanotube – polypyrrole- chitosan layer
This paper presents the design and fabrication of proximity coupled feed disk resonator coated with Multi Walled Carbon Nanotubes (MWCNTs) and Polypyrrole-Chitosan (PPy-CHI) layers as a napropamide sensor. Computer Simulation Technology (CST) microwave studio was used to obtain the best design of disk resonator and feed line position in 5 GHz resonant frequency. Also, MWCNTs - PPy-CHI layers were coated on the disk resonator using electric field deposition and chemical interaction between sensing layer and napropamide was investigated by Fourier Transform Infrared Spectroscopy (FT-IR). The evaluation of the system was performed using different concentrations of commercial napropamide and pure napropamide at room temperature (25 0C). Experimental results prove that proximity coupled feed disk resonator coated with MWCNTs-PPy-CHI layers is a simple, fast (Measurement- time=5 seconds), accurate (as low as 0.1 ppm), low cost and it has the potential of fabrication as a portable instrumentation system for detecting pesticides in water and soil.