融合图属性的n元关联链接预测算法

Q3 Arts and Humanities Icon Pub Date : 2023-03-01 DOI:10.1109/ICNLP58431.2023.00081
Chenlin Xing, Tao Luo, Jie Lv, Zhilong Zhang
{"title":"融合图属性的n元关联链接预测算法","authors":"Chenlin Xing, Tao Luo, Jie Lv, Zhilong Zhang","doi":"10.1109/ICNLP58431.2023.00081","DOIUrl":null,"url":null,"abstract":"Knowledge graph is widely used in real life, but there is still a lot of missing information, which makes the completion of knowledge graph very important. Link prediction is one of the main methods to complete knowledge graph. In addition to binary relation facts which have received a lot of attention, there are also hyper-relation facts that are ubiquitous in the real world, namely n-ary relation facts. In this paper, we focus on link prediction algorithms for n-ary relation facts and find that the existing algorithms ignore the graph attribute information of nary relation facts themselves in the calculation process. Consequently, the distribution of entities and relations in n-ary relational datasets is analyzed first. The results show the fact that some of the n-ary relation facts are very important, while others are less important. This indicates that they have the characteristics of the scale-free network. Then, the global graph parameter (GGP) is introduced to describe the importance of entities and relations, and weighted to the link prediction process to improve the accuracy performance. Finally, extensive evaluation on commonly used n-ary datasets JF17K, WikiPeople, and their specific arity subsets validate the superiority of the proposed algorithm.","PeriodicalId":53637,"journal":{"name":"Icon","volume":"46 1","pages":"414-418"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"N-ary Relational Link Prediction Algorithm Fusing Graph Attributes\",\"authors\":\"Chenlin Xing, Tao Luo, Jie Lv, Zhilong Zhang\",\"doi\":\"10.1109/ICNLP58431.2023.00081\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Knowledge graph is widely used in real life, but there is still a lot of missing information, which makes the completion of knowledge graph very important. Link prediction is one of the main methods to complete knowledge graph. In addition to binary relation facts which have received a lot of attention, there are also hyper-relation facts that are ubiquitous in the real world, namely n-ary relation facts. In this paper, we focus on link prediction algorithms for n-ary relation facts and find that the existing algorithms ignore the graph attribute information of nary relation facts themselves in the calculation process. Consequently, the distribution of entities and relations in n-ary relational datasets is analyzed first. The results show the fact that some of the n-ary relation facts are very important, while others are less important. This indicates that they have the characteristics of the scale-free network. Then, the global graph parameter (GGP) is introduced to describe the importance of entities and relations, and weighted to the link prediction process to improve the accuracy performance. Finally, extensive evaluation on commonly used n-ary datasets JF17K, WikiPeople, and their specific arity subsets validate the superiority of the proposed algorithm.\",\"PeriodicalId\":53637,\"journal\":{\"name\":\"Icon\",\"volume\":\"46 1\",\"pages\":\"414-418\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Icon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNLP58431.2023.00081\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Arts and Humanities\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Icon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNLP58431.2023.00081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Arts and Humanities","Score":null,"Total":0}
引用次数: 0

摘要

知识图谱在现实生活中得到了广泛的应用,但仍然存在大量的信息缺失,这使得知识图谱的完善变得非常重要。链接预测是完成知识图谱的主要方法之一。除了备受关注的二元关系事实外,还有在现实世界中普遍存在的超关系事实,即n元关系事实。本文重点研究了n元关系事实的链路预测算法,发现现有算法在计算过程中忽略了n元关系事实本身的图属性信息。因此,首先分析了n元关系数据集中实体和关系的分布。结果表明,某些n元关系事实非常重要,而另一些则不那么重要。这表明它们具有无标度网络的特征。然后,引入全局图参数(GGP)来描述实体和关系的重要性,并将其加权到链路预测过程中,以提高预测精度。最后,对常用的n元数据集JF17K、WikiPeople及其特定的基数子集进行了广泛的评估,验证了该算法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
N-ary Relational Link Prediction Algorithm Fusing Graph Attributes
Knowledge graph is widely used in real life, but there is still a lot of missing information, which makes the completion of knowledge graph very important. Link prediction is one of the main methods to complete knowledge graph. In addition to binary relation facts which have received a lot of attention, there are also hyper-relation facts that are ubiquitous in the real world, namely n-ary relation facts. In this paper, we focus on link prediction algorithms for n-ary relation facts and find that the existing algorithms ignore the graph attribute information of nary relation facts themselves in the calculation process. Consequently, the distribution of entities and relations in n-ary relational datasets is analyzed first. The results show the fact that some of the n-ary relation facts are very important, while others are less important. This indicates that they have the characteristics of the scale-free network. Then, the global graph parameter (GGP) is introduced to describe the importance of entities and relations, and weighted to the link prediction process to improve the accuracy performance. Finally, extensive evaluation on commonly used n-ary datasets JF17K, WikiPeople, and their specific arity subsets validate the superiority of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Icon
Icon Arts and Humanities-History and Philosophy of Science
CiteScore
0.30
自引率
0.00%
发文量
0
期刊最新文献
Long-term Coherent Accumulation Algorithm Based on Radar Altimeter Deep Composite Kernels ELM Based on Spatial Feature Extraction for Hyperspectral Vegetation Image Classification Research based on improved SSD target detection algorithm CON-GAN-BERT: combining Contrastive Learning with Generative Adversarial Nets for Few-Shot Sentiment Classification A Two Stage Learning Algorithm for Hyperspectral Image Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1