{"title":"为新手玩家生成启发式信息","authors":"F. Silva, Aaron Isaksen, J. Togelius, Andy Nealen","doi":"10.1109/CIG.2016.7860407","DOIUrl":null,"url":null,"abstract":"We consider the problem of generating compact sub-optimal game-playing heuristics that can be understood and easily executed by novices. In particular, we seek to find heuristics that can lead to good play while at the same time be expressed as fast and frugal trees or short decision lists. This has applications in automatically generating tutorials and instructions for playing games, but also in analyzing game design and measuring game depth. We use the classic game Blackjack as a testbed, and compare condition induction with the RIPPER algorithm, exhaustive-greedy search in statement space, genetic programming and axis-aligned search. We find that all of these methods can find compact well-playing heuristics under the given constraints, with axis-aligned search performing particularly well.","PeriodicalId":6594,"journal":{"name":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","volume":"14 1","pages":"1-8"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Generating heuristics for novice players\",\"authors\":\"F. Silva, Aaron Isaksen, J. Togelius, Andy Nealen\",\"doi\":\"10.1109/CIG.2016.7860407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider the problem of generating compact sub-optimal game-playing heuristics that can be understood and easily executed by novices. In particular, we seek to find heuristics that can lead to good play while at the same time be expressed as fast and frugal trees or short decision lists. This has applications in automatically generating tutorials and instructions for playing games, but also in analyzing game design and measuring game depth. We use the classic game Blackjack as a testbed, and compare condition induction with the RIPPER algorithm, exhaustive-greedy search in statement space, genetic programming and axis-aligned search. We find that all of these methods can find compact well-playing heuristics under the given constraints, with axis-aligned search performing particularly well.\",\"PeriodicalId\":6594,\"journal\":{\"name\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"volume\":\"14 1\",\"pages\":\"1-8\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Conference on Computational Intelligence and Games (CIG)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIG.2016.7860407\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Conference on Computational Intelligence and Games (CIG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIG.2016.7860407","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
We consider the problem of generating compact sub-optimal game-playing heuristics that can be understood and easily executed by novices. In particular, we seek to find heuristics that can lead to good play while at the same time be expressed as fast and frugal trees or short decision lists. This has applications in automatically generating tutorials and instructions for playing games, but also in analyzing game design and measuring game depth. We use the classic game Blackjack as a testbed, and compare condition induction with the RIPPER algorithm, exhaustive-greedy search in statement space, genetic programming and axis-aligned search. We find that all of these methods can find compact well-playing heuristics under the given constraints, with axis-aligned search performing particularly well.