染料敏化太阳能电池用石墨烯纳米片反电极

D. Zhang, X. D. Li, S. Chen, H. B. Li, Z. Sun, X. Yin, S. M. Huang
{"title":"染料敏化太阳能电池用石墨烯纳米片反电极","authors":"D. Zhang, X. D. Li, S. Chen, H. B. Li, Z. Sun, X. Yin, S. M. Huang","doi":"10.1109/INEC.2010.5424743","DOIUrl":null,"url":null,"abstract":"Graphene nanosheets (GNs) have been investigated as a counter electrode for dye-sensitized solar cells (DSCs). Mesoporous TiO2 films are prepared from the commercial TiO2 nano-powders by screen-printing technique on fluorine-doped tin oxide (FTO) slides. GNs are applied to substitute for platinum as counter-electrode materials. GN films are screen printed on FTO glass using a paste based on GNs dispersed in a mixture of terpineol and ethylcellulose. GN counter-electrodes were prepared by annealing the GN films at different temperatures. A metal-free organic dye (indoline dye D102) is used as a sensitizer. Morphological and electrochemical properties of the formed counter-electrodes are investigated by scanning electronic microscopy and electrochemical impedance spectroscopy (EIS), respectively. The electronic and ionic processes in platinum and GNs based DSCs are analysized and discussed. A conversion efficiency of 2.94 % has been obtained for GNs based DSCs. It is found that the quality of the GN counter-electrode and the photovoltaic performance are strongly affected by the annealing temperature of GN materials.","PeriodicalId":6390,"journal":{"name":"2010 3rd International Nanoelectronics Conference (INEC)","volume":"37 1","pages":"610-611"},"PeriodicalIF":0.0000,"publicationDate":"2010-03-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Graphene nanosheet counter-electrodes for dye-sensitized solar cells\",\"authors\":\"D. Zhang, X. D. Li, S. Chen, H. B. Li, Z. Sun, X. Yin, S. M. Huang\",\"doi\":\"10.1109/INEC.2010.5424743\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graphene nanosheets (GNs) have been investigated as a counter electrode for dye-sensitized solar cells (DSCs). Mesoporous TiO2 films are prepared from the commercial TiO2 nano-powders by screen-printing technique on fluorine-doped tin oxide (FTO) slides. GNs are applied to substitute for platinum as counter-electrode materials. GN films are screen printed on FTO glass using a paste based on GNs dispersed in a mixture of terpineol and ethylcellulose. GN counter-electrodes were prepared by annealing the GN films at different temperatures. A metal-free organic dye (indoline dye D102) is used as a sensitizer. Morphological and electrochemical properties of the formed counter-electrodes are investigated by scanning electronic microscopy and electrochemical impedance spectroscopy (EIS), respectively. The electronic and ionic processes in platinum and GNs based DSCs are analysized and discussed. A conversion efficiency of 2.94 % has been obtained for GNs based DSCs. It is found that the quality of the GN counter-electrode and the photovoltaic performance are strongly affected by the annealing temperature of GN materials.\",\"PeriodicalId\":6390,\"journal\":{\"name\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"volume\":\"37 1\",\"pages\":\"610-611\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-03-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2010 3rd International Nanoelectronics Conference (INEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/INEC.2010.5424743\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 3rd International Nanoelectronics Conference (INEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INEC.2010.5424743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

石墨烯纳米片(GNs)作为染料敏化太阳能电池(dsc)的对电极进行了研究。采用丝网印刷技术在掺氟氧化锡(FTO)载玻片上制备了介孔TiO2薄膜。GNs被用于替代铂作为对电极材料。GN薄膜是用分散在松油醇和乙基纤维素混合物中的GN浆料在FTO玻璃上丝网印刷的。通过在不同温度下对GN薄膜进行退火,制备了GN反电极。使用无金属有机染料(吲哚染料D102)作为敏化剂。利用扫描电镜和电化学阻抗谱(EIS)研究了制备的反电极的形态和电化学性能。对铂基dsc和GNs基dsc的电子和离子过程进行了分析和讨论。GNs基dsc的转换效率为2.94%。研究发现,GN材料的退火温度对GN对电极的质量和光伏性能有很大影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Graphene nanosheet counter-electrodes for dye-sensitized solar cells
Graphene nanosheets (GNs) have been investigated as a counter electrode for dye-sensitized solar cells (DSCs). Mesoporous TiO2 films are prepared from the commercial TiO2 nano-powders by screen-printing technique on fluorine-doped tin oxide (FTO) slides. GNs are applied to substitute for platinum as counter-electrode materials. GN films are screen printed on FTO glass using a paste based on GNs dispersed in a mixture of terpineol and ethylcellulose. GN counter-electrodes were prepared by annealing the GN films at different temperatures. A metal-free organic dye (indoline dye D102) is used as a sensitizer. Morphological and electrochemical properties of the formed counter-electrodes are investigated by scanning electronic microscopy and electrochemical impedance spectroscopy (EIS), respectively. The electronic and ionic processes in platinum and GNs based DSCs are analysized and discussed. A conversion efficiency of 2.94 % has been obtained for GNs based DSCs. It is found that the quality of the GN counter-electrode and the photovoltaic performance are strongly affected by the annealing temperature of GN materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A synthetic strategy of quantum dot-bioconjugate Effects of laser drilling through silicon substrate on MOSFET device characteristics The study of Y2O3-doping-induced size diversification of ZrO2 nanocrystals Antibacterial, antiviral, and antibiofilms nanoparticles High efficiency InGaP/GaAs solar cell with Sub-wavelength structure on AlInP window layer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1