多层薄膜材料粗糙表面和界面的x射线反射率分析研究进展

Y. Fujii
{"title":"多层薄膜材料粗糙表面和界面的x射线反射率分析研究进展","authors":"Y. Fujii","doi":"10.1155/2013/678361","DOIUrl":null,"url":null,"abstract":"X-ray reflectometry is a powerful tool for investigations on rough surface and interface structures of multilayered thin film materials. The X-ray reflectivity has been calculated based on the Parratt formalism, accounting for the effect of roughness by the theory of Nevot-Croce conventionally. However, in previous studies, the calculations of the X-ray reflectivity often show a strange effect where interference effects would increase at a rough surface. And estimated surface and interface roughnesses from the X-ray reflectivity measurements did not correspond to the TEM image observation results. The strange result had its origin in a used equation due to a serious mistake in which the Fresnel transmission coefficient in the reflectivity equation is increased at a rough interface because of a lack of consideration of diffuse scattering. In this review, a new accurate formalism that corrects this mistake is presented. The new accurate formalism derives an accurate analysis of the X-ray reflectivity from a multilayer surface of thin film materials, taking into account the effect of roughness-induced diffuse scattering. The calculated reflectivity by this accurate reflectivity equation should enable the structure of buried interfaces to be analyzed more accurately.","PeriodicalId":17611,"journal":{"name":"Journal: Materials","volume":"77 1","pages":"1-20"},"PeriodicalIF":0.0000,"publicationDate":"2013-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Recent Developments in the X-Ray Reflectivity Analysis for Rough Surfaces and Interfaces of Multilayered Thin Film Materials\",\"authors\":\"Y. Fujii\",\"doi\":\"10.1155/2013/678361\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"X-ray reflectometry is a powerful tool for investigations on rough surface and interface structures of multilayered thin film materials. The X-ray reflectivity has been calculated based on the Parratt formalism, accounting for the effect of roughness by the theory of Nevot-Croce conventionally. However, in previous studies, the calculations of the X-ray reflectivity often show a strange effect where interference effects would increase at a rough surface. And estimated surface and interface roughnesses from the X-ray reflectivity measurements did not correspond to the TEM image observation results. The strange result had its origin in a used equation due to a serious mistake in which the Fresnel transmission coefficient in the reflectivity equation is increased at a rough interface because of a lack of consideration of diffuse scattering. In this review, a new accurate formalism that corrects this mistake is presented. The new accurate formalism derives an accurate analysis of the X-ray reflectivity from a multilayer surface of thin film materials, taking into account the effect of roughness-induced diffuse scattering. The calculated reflectivity by this accurate reflectivity equation should enable the structure of buried interfaces to be analyzed more accurately.\",\"PeriodicalId\":17611,\"journal\":{\"name\":\"Journal: Materials\",\"volume\":\"77 1\",\"pages\":\"1-20\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-07-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal: Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2013/678361\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal: Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2013/678361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

x射线反射法是研究多层薄膜材料粗糙表面和界面结构的有力工具。x射线反射率的计算基于Parratt形式,采用Nevot-Croce理论考虑粗糙度的影响。然而,在以前的研究中,x射线反射率的计算经常显示出一种奇怪的效应,即在粗糙的表面上干涉效应会增加。x射线反射率测量估计的表面和界面粗糙度与TEM图像观测结果不一致。这个奇怪的结果源于一个常用的方程,由于没有考虑漫射散射,反射率方程中的菲涅耳透射系数在粗糙的界面处增加,这是一个严重的错误。本文提出了一种新的准确的形式主义,纠正了这一错误。新的精确形式对多层薄膜材料表面的x射线反射率进行了精确的分析,并考虑了粗糙度引起的漫射散射的影响。利用该精确反射率方程计算出的反射率可以更准确地分析埋藏界面的结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Recent Developments in the X-Ray Reflectivity Analysis for Rough Surfaces and Interfaces of Multilayered Thin Film Materials
X-ray reflectometry is a powerful tool for investigations on rough surface and interface structures of multilayered thin film materials. The X-ray reflectivity has been calculated based on the Parratt formalism, accounting for the effect of roughness by the theory of Nevot-Croce conventionally. However, in previous studies, the calculations of the X-ray reflectivity often show a strange effect where interference effects would increase at a rough surface. And estimated surface and interface roughnesses from the X-ray reflectivity measurements did not correspond to the TEM image observation results. The strange result had its origin in a used equation due to a serious mistake in which the Fresnel transmission coefficient in the reflectivity equation is increased at a rough interface because of a lack of consideration of diffuse scattering. In this review, a new accurate formalism that corrects this mistake is presented. The new accurate formalism derives an accurate analysis of the X-ray reflectivity from a multilayer surface of thin film materials, taking into account the effect of roughness-induced diffuse scattering. The calculated reflectivity by this accurate reflectivity equation should enable the structure of buried interfaces to be analyzed more accurately.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modification of Aluminium 6063 Microstructure by Adding Boron and Titanium to Improve the Thermal Conductivity Well-Dispersed Nanoscale Zero-Valent Iron Supported in Macroporous Silica Foams: Synthesis, Characterization, and Performance in Cr(VI) Removal Investigation of Properties of Silk Fiber Produced in Ethiopia Utilizing Fullerenols as Surfactant for Carbon Nanotubes Dispersions Preparation Preparation, Characterization, and Cationic Functionalization of Cellulose-Based Aerogels for Wastewater Clarification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1