{"title":"铁合金®增强羟基磷灰石的热等静压(HIPing)","authors":"N. Ehsani, A. Ruys, C. Sorrell","doi":"10.4028/www.scientific.net/JBBTE.17.87","DOIUrl":null,"url":null,"abstract":"The goal of this study was to produce hydroxyapatite (HAp), a bioactive biomaterial, in a decomposition-free form with fracture toughness comparable to bone by metal fibre-reinforcement. This goal was ultimately achieved. Glass encapsulation of FeCralloy®-reinforced HAp was an unsuccessful technique due to the excessive low-temperature volatilisation, which aerated the glass. Therefore a graphite/stainless steel encapsulation system was used in the present study. Hot isostatic pressing enabled the production of fully dense decomposition-free HAp with toughness improvements of 14 times (FeCralloy® fibres, optimally 15 vol%), comparable to cortical bone. Further, it was found that the HAp decomposition temperature was higher at 100 MPa (the HIPing pressure) than for pressureless sintering. Addition of the FeCralloy® fibre additive induced significant plastic deformation and ductile fracture of the hydroxyapatite.","PeriodicalId":15198,"journal":{"name":"Journal of Biomimetics, Biomaterials and Tissue Engineering","volume":"16 1","pages":"102 - 87"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Hot Isostatic Pressing (HIPing) of FeCralloy®-Reinforced Hydroxyapatite\",\"authors\":\"N. Ehsani, A. Ruys, C. Sorrell\",\"doi\":\"10.4028/www.scientific.net/JBBTE.17.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The goal of this study was to produce hydroxyapatite (HAp), a bioactive biomaterial, in a decomposition-free form with fracture toughness comparable to bone by metal fibre-reinforcement. This goal was ultimately achieved. Glass encapsulation of FeCralloy®-reinforced HAp was an unsuccessful technique due to the excessive low-temperature volatilisation, which aerated the glass. Therefore a graphite/stainless steel encapsulation system was used in the present study. Hot isostatic pressing enabled the production of fully dense decomposition-free HAp with toughness improvements of 14 times (FeCralloy® fibres, optimally 15 vol%), comparable to cortical bone. Further, it was found that the HAp decomposition temperature was higher at 100 MPa (the HIPing pressure) than for pressureless sintering. Addition of the FeCralloy® fibre additive induced significant plastic deformation and ductile fracture of the hydroxyapatite.\",\"PeriodicalId\":15198,\"journal\":{\"name\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"volume\":\"16 1\",\"pages\":\"102 - 87\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biomimetics, Biomaterials and Tissue Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4028/www.scientific.net/JBBTE.17.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biomimetics, Biomaterials and Tissue Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4028/www.scientific.net/JBBTE.17.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hot Isostatic Pressing (HIPing) of FeCralloy®-Reinforced Hydroxyapatite
The goal of this study was to produce hydroxyapatite (HAp), a bioactive biomaterial, in a decomposition-free form with fracture toughness comparable to bone by metal fibre-reinforcement. This goal was ultimately achieved. Glass encapsulation of FeCralloy®-reinforced HAp was an unsuccessful technique due to the excessive low-temperature volatilisation, which aerated the glass. Therefore a graphite/stainless steel encapsulation system was used in the present study. Hot isostatic pressing enabled the production of fully dense decomposition-free HAp with toughness improvements of 14 times (FeCralloy® fibres, optimally 15 vol%), comparable to cortical bone. Further, it was found that the HAp decomposition temperature was higher at 100 MPa (the HIPing pressure) than for pressureless sintering. Addition of the FeCralloy® fibre additive induced significant plastic deformation and ductile fracture of the hydroxyapatite.