二氢吡啶的合成及其生物潜力研究进展

Shilpi Pathak, Supriya Jain, Abhishek Pratap
{"title":"二氢吡啶的合成及其生物潜力研究进展","authors":"Shilpi Pathak, Supriya Jain, Abhishek Pratap","doi":"10.2174/1570180820666230508100955","DOIUrl":null,"url":null,"abstract":"\n\nDihydropyridine is an outstanding heterocyclic compound with a wide range of pharmacological potential, including antimicrobial, antioxidant, antitubercular, antiarrhythmic, insecticidal, antihypertensive, vasodilator, anti-inflammatory, antibacterial, antidiabetic and superlative moiety in drug discovery. It is also a versatile pharmacophore, a privileged scaffold, and a distinguished heterocyclic compound. Excellent outcomes have already been shown with novel targets and various modes of action for the dihydropyridines hybrids. This review focused on the mode of action, synthesis, and biological activities. As a result, numerous dihydropyridine candidates are undergoing clinical studies to treat various disorders. This article highlights how novel techniques were used to create dihydropyridines, which may be helpful to researchers in the future.\n","PeriodicalId":18063,"journal":{"name":"Letters in Drug Design & Discovery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Review on Synthesis and Biological Potential of Dihydropyridines\",\"authors\":\"Shilpi Pathak, Supriya Jain, Abhishek Pratap\",\"doi\":\"10.2174/1570180820666230508100955\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nDihydropyridine is an outstanding heterocyclic compound with a wide range of pharmacological potential, including antimicrobial, antioxidant, antitubercular, antiarrhythmic, insecticidal, antihypertensive, vasodilator, anti-inflammatory, antibacterial, antidiabetic and superlative moiety in drug discovery. It is also a versatile pharmacophore, a privileged scaffold, and a distinguished heterocyclic compound. Excellent outcomes have already been shown with novel targets and various modes of action for the dihydropyridines hybrids. This review focused on the mode of action, synthesis, and biological activities. As a result, numerous dihydropyridine candidates are undergoing clinical studies to treat various disorders. This article highlights how novel techniques were used to create dihydropyridines, which may be helpful to researchers in the future.\\n\",\"PeriodicalId\":18063,\"journal\":{\"name\":\"Letters in Drug Design & Discovery\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Drug Design & Discovery\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/1570180820666230508100955\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Drug Design & Discovery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/1570180820666230508100955","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

二氢吡啶是一种杰出的杂环化合物,具有广泛的药理潜力,包括抗菌、抗氧化、抗结核、抗心律失常、杀虫、降压、血管舒张、抗炎、抗菌、降糖等,是药物发现领域的前沿。它也是一种多功能药效团,一种特殊的支架和一种特殊的杂环化合物。二氢吡啶类杂化物的新靶点和多种作用方式已经显示出良好的效果。本文就其作用方式、合成及生物活性进行综述。因此,许多二氢吡啶候选药物正在进行临床研究,以治疗各种疾病。本文重点介绍了如何使用新技术来制造二氢吡啶,这可能对未来的研究人员有所帮助。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Review on Synthesis and Biological Potential of Dihydropyridines
Dihydropyridine is an outstanding heterocyclic compound with a wide range of pharmacological potential, including antimicrobial, antioxidant, antitubercular, antiarrhythmic, insecticidal, antihypertensive, vasodilator, anti-inflammatory, antibacterial, antidiabetic and superlative moiety in drug discovery. It is also a versatile pharmacophore, a privileged scaffold, and a distinguished heterocyclic compound. Excellent outcomes have already been shown with novel targets and various modes of action for the dihydropyridines hybrids. This review focused on the mode of action, synthesis, and biological activities. As a result, numerous dihydropyridine candidates are undergoing clinical studies to treat various disorders. This article highlights how novel techniques were used to create dihydropyridines, which may be helpful to researchers in the future.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pyrazolone Derivatives: Synthetic Chemistry, Exploring Pharmacological Activity - A Mini Review Enhanced Permeation Retention Effect - Modeling and Imaging Approaches for Nanoparticle-Mediated Anti-cancer Diagnostics or Therapy Rheum khorasanicum Decreases Migration and Induces Apoptosis in the MDA-MB-231 Breast Cancer Cell Line Isoquercetin Neuroprotective Molecular Targets in Parkinson’s Disease: Recent Highlights and Future Perspectives Unveiling Novel HIV-1 Protease Inhibitors through an Integrated Analysis of 3D-QSAR, Molecular Docking, and Binding Free Energy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1