{"title":"Twitter机器人:非真实推文的评估分析","authors":"L. Gonçalves, Renan de Siqueira Cecchin","doi":"10.22168/2237-6321-32285","DOIUrl":null,"url":null,"abstract":"Dentre as estratégias de manipulação de informações, contas inautênticas em redes sociais têm ganhado força, sobretudo quando relacionadas a temas sobre política. A rede social que mais facilita essa ação é o Twitter, com seu sistema de bots e hashtags. Tendo isso em vista, neste artigo pretendemos localizar, analisar e categorizar ocorrências de avaliações em contas inautênticas que suscitam a disseminação de crenças e opiniões acerca do cenário político atual brasileiro. Por meio do site Bot Sentinel, que utiliza machine learning com base em um modelo matemático (ZHANG, 2020) para prever a autenticidade de um usuário e expor contas inautênticas e suas conexões com os temas mais comentados, coletamos as hashtags mais utilizadas entre maio e outubro de 2020. A partir disso, selecionamos 10 tweets de contas inautênticas contendo a hashtag mais popular em seu referido período para cada mês da coleta. O aparato teórico em que nos baseamos é o sistema de avaliatividade, mais precisamente o subsistema de atitude (MARTIN; WHITE, 2005), para verificarmos como tais avaliações operam para construir relações de alinhamento e relacionamento entre os escritores e seus leitores. Os resultados indicam o uso de padrões avaliativos de capacidade positiva para o Presidente da República e de propriedade negativa para denegrir a imagem de seus opositores, acentuando a ideia de Nós vs. Eles (BORGES; VIDIGAL, 2018).","PeriodicalId":40607,"journal":{"name":"Entrepalavras","volume":"25 1","pages":""},"PeriodicalIF":0.1000,"publicationDate":"2022-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bots no Twitter: Análise Avaliativa de tweets não autênticos\",\"authors\":\"L. Gonçalves, Renan de Siqueira Cecchin\",\"doi\":\"10.22168/2237-6321-32285\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Dentre as estratégias de manipulação de informações, contas inautênticas em redes sociais têm ganhado força, sobretudo quando relacionadas a temas sobre política. A rede social que mais facilita essa ação é o Twitter, com seu sistema de bots e hashtags. Tendo isso em vista, neste artigo pretendemos localizar, analisar e categorizar ocorrências de avaliações em contas inautênticas que suscitam a disseminação de crenças e opiniões acerca do cenário político atual brasileiro. Por meio do site Bot Sentinel, que utiliza machine learning com base em um modelo matemático (ZHANG, 2020) para prever a autenticidade de um usuário e expor contas inautênticas e suas conexões com os temas mais comentados, coletamos as hashtags mais utilizadas entre maio e outubro de 2020. A partir disso, selecionamos 10 tweets de contas inautênticas contendo a hashtag mais popular em seu referido período para cada mês da coleta. O aparato teórico em que nos baseamos é o sistema de avaliatividade, mais precisamente o subsistema de atitude (MARTIN; WHITE, 2005), para verificarmos como tais avaliações operam para construir relações de alinhamento e relacionamento entre os escritores e seus leitores. Os resultados indicam o uso de padrões avaliativos de capacidade positiva para o Presidente da República e de propriedade negativa para denegrir a imagem de seus opositores, acentuando a ideia de Nós vs. Eles (BORGES; VIDIGAL, 2018).\",\"PeriodicalId\":40607,\"journal\":{\"name\":\"Entrepalavras\",\"volume\":\"25 1\",\"pages\":\"\"},\"PeriodicalIF\":0.1000,\"publicationDate\":\"2022-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Entrepalavras\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22168/2237-6321-32285\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"0\",\"JCRName\":\"LANGUAGE & LINGUISTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Entrepalavras","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22168/2237-6321-32285","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"LANGUAGE & LINGUISTICS","Score":null,"Total":0}
Bots no Twitter: Análise Avaliativa de tweets não autênticos
Dentre as estratégias de manipulação de informações, contas inautênticas em redes sociais têm ganhado força, sobretudo quando relacionadas a temas sobre política. A rede social que mais facilita essa ação é o Twitter, com seu sistema de bots e hashtags. Tendo isso em vista, neste artigo pretendemos localizar, analisar e categorizar ocorrências de avaliações em contas inautênticas que suscitam a disseminação de crenças e opiniões acerca do cenário político atual brasileiro. Por meio do site Bot Sentinel, que utiliza machine learning com base em um modelo matemático (ZHANG, 2020) para prever a autenticidade de um usuário e expor contas inautênticas e suas conexões com os temas mais comentados, coletamos as hashtags mais utilizadas entre maio e outubro de 2020. A partir disso, selecionamos 10 tweets de contas inautênticas contendo a hashtag mais popular em seu referido período para cada mês da coleta. O aparato teórico em que nos baseamos é o sistema de avaliatividade, mais precisamente o subsistema de atitude (MARTIN; WHITE, 2005), para verificarmos como tais avaliações operam para construir relações de alinhamento e relacionamento entre os escritores e seus leitores. Os resultados indicam o uso de padrões avaliativos de capacidade positiva para o Presidente da República e de propriedade negativa para denegrir a imagem de seus opositores, acentuando a ideia de Nós vs. Eles (BORGES; VIDIGAL, 2018).