Feifan Shen, Lingjian Ye, Saite Fan, Zhiqiang Ge, Zhihuan Song
{"title":"基于DTW-LSTM的不均匀批处理运行轨迹预测","authors":"Feifan Shen, Lingjian Ye, Saite Fan, Zhiqiang Ge, Zhihuan Song","doi":"10.1109/DDCLS.2019.8908850","DOIUrl":null,"url":null,"abstract":"This paper handles with the problem of the run-to-run trajectory prediction of batch processes with uneven batch length. Most current data-driven works focus on the run-to-run variations during both batch trajectory modeling and prediction stages. However, batch-to-batch correlations should be drawn extreme attentions to when gradual changes exist in batch sequence. To obtain a better batch trajectory prediction performance of uneven-length batch processes, dynamic time warping (DTW) and long-short term memory (LSTM) neural network are introduced in this work to extract batch-to-batch correlations. Firstly, the recursive DTW is used to synchronize uneven batch samples. Then, the LSTM neural network is introduced to extract the run-to-run batch correlations during the trajectory modeling stage. Finally, online batch trajectory prediction can be implemented according to the offline LSTM model. A simulation based on the fed-batch penicillin fermentation process is provided to testify the effectiveness of the proposed method.","PeriodicalId":6699,"journal":{"name":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","volume":"17 1","pages":"1183-1188"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Run-to-run Trajectory Prediction of Uneven-length Batch Processes Using DTW-LSTM\",\"authors\":\"Feifan Shen, Lingjian Ye, Saite Fan, Zhiqiang Ge, Zhihuan Song\",\"doi\":\"10.1109/DDCLS.2019.8908850\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper handles with the problem of the run-to-run trajectory prediction of batch processes with uneven batch length. Most current data-driven works focus on the run-to-run variations during both batch trajectory modeling and prediction stages. However, batch-to-batch correlations should be drawn extreme attentions to when gradual changes exist in batch sequence. To obtain a better batch trajectory prediction performance of uneven-length batch processes, dynamic time warping (DTW) and long-short term memory (LSTM) neural network are introduced in this work to extract batch-to-batch correlations. Firstly, the recursive DTW is used to synchronize uneven batch samples. Then, the LSTM neural network is introduced to extract the run-to-run batch correlations during the trajectory modeling stage. Finally, online batch trajectory prediction can be implemented according to the offline LSTM model. A simulation based on the fed-batch penicillin fermentation process is provided to testify the effectiveness of the proposed method.\",\"PeriodicalId\":6699,\"journal\":{\"name\":\"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)\",\"volume\":\"17 1\",\"pages\":\"1183-1188\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DDCLS.2019.8908850\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DDCLS.2019.8908850","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Run-to-run Trajectory Prediction of Uneven-length Batch Processes Using DTW-LSTM
This paper handles with the problem of the run-to-run trajectory prediction of batch processes with uneven batch length. Most current data-driven works focus on the run-to-run variations during both batch trajectory modeling and prediction stages. However, batch-to-batch correlations should be drawn extreme attentions to when gradual changes exist in batch sequence. To obtain a better batch trajectory prediction performance of uneven-length batch processes, dynamic time warping (DTW) and long-short term memory (LSTM) neural network are introduced in this work to extract batch-to-batch correlations. Firstly, the recursive DTW is used to synchronize uneven batch samples. Then, the LSTM neural network is introduced to extract the run-to-run batch correlations during the trajectory modeling stage. Finally, online batch trajectory prediction can be implemented according to the offline LSTM model. A simulation based on the fed-batch penicillin fermentation process is provided to testify the effectiveness of the proposed method.