等离子体银纳米粒子修饰g-C3N4增强可见光驱动光催化降解和氢气生成

Fu Ding , Tao Ming , Hanyan Zhang , Yu Gao , Valerian Dragutan , Yaguang Sun , Ileana Dragutan , Zhenhe Xu
{"title":"等离子体银纳米粒子修饰g-C3N4增强可见光驱动光催化降解和氢气生成","authors":"Fu Ding ,&nbsp;Tao Ming ,&nbsp;Hanyan Zhang ,&nbsp;Yu Gao ,&nbsp;Valerian Dragutan ,&nbsp;Yaguang Sun ,&nbsp;Ileana Dragutan ,&nbsp;Zhenhe Xu","doi":"10.1016/j.recm.2021.12.004","DOIUrl":null,"url":null,"abstract":"<div><p>The plasmonic Ag nanoparticles (NPs) loaded g-C<sub>3</sub>N<sub>4</sub> photocatalysts (Ag/C<sub>3</sub>N<sub>4</sub>) were successfully prepared via a conventional procedure. The fully characterized Ag/C<sub>3</sub>N<sub>4</sub> photocatalysts exhibited excellent stability and greatly enhanced visible light-driven photocatalytic performance both in the degradation of methyl orange (MO) and H<sub>2</sub> evolution from water splitting. The 1.0 wt% Ag/C<sub>3</sub>N<sub>4</sub> allowed the highest reaction rate of 0.0294 min<sup>−1</sup> to be obtained in the MO degradation, which is about 2.3 times higher than the reaction rate of g-C<sub>3</sub>N<sub>4</sub> alone of 0.0129 min<sup>−1</sup>. Furthermore, the optimum H<sub>2</sub> evolution and the k value attained 20 µmol and 1.573 h<sup>−1</sup>, respectively, after 12 h of visible light irradiation. The surface plasmon resonance effect of Ag NPs and the charge transfer between the two components of the photocatalyst, strongly promote generation of photoinduced charge carriers while suppressing their recombination. These factors are held responsible for the enhanced visible light photocatalytic performance of Ag/C<sub>3</sub>N<sub>4</sub>. Our methodology will provide guidance for the design and synthesis of plasmon-enhanced visible light photocatalysts derived from Ag NPs and g-C<sub>3</sub>N<sub>4</sub> and their applications in environmental remediation and green energy development.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 1","pages":"Pages 1-7"},"PeriodicalIF":0.0000,"publicationDate":"2022-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443321000040/pdfft?md5=77c55a72ad698e391536c54301bf3802&pid=1-s2.0-S2772443321000040-main.pdf","citationCount":"12","resultStr":"{\"title\":\"Plasmonic Ag nanoparticles decorated g-C3N4 for enhanced visible-light driven photocatalytic degradation and H2 production\",\"authors\":\"Fu Ding ,&nbsp;Tao Ming ,&nbsp;Hanyan Zhang ,&nbsp;Yu Gao ,&nbsp;Valerian Dragutan ,&nbsp;Yaguang Sun ,&nbsp;Ileana Dragutan ,&nbsp;Zhenhe Xu\",\"doi\":\"10.1016/j.recm.2021.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The plasmonic Ag nanoparticles (NPs) loaded g-C<sub>3</sub>N<sub>4</sub> photocatalysts (Ag/C<sub>3</sub>N<sub>4</sub>) were successfully prepared via a conventional procedure. The fully characterized Ag/C<sub>3</sub>N<sub>4</sub> photocatalysts exhibited excellent stability and greatly enhanced visible light-driven photocatalytic performance both in the degradation of methyl orange (MO) and H<sub>2</sub> evolution from water splitting. The 1.0 wt% Ag/C<sub>3</sub>N<sub>4</sub> allowed the highest reaction rate of 0.0294 min<sup>−1</sup> to be obtained in the MO degradation, which is about 2.3 times higher than the reaction rate of g-C<sub>3</sub>N<sub>4</sub> alone of 0.0129 min<sup>−1</sup>. Furthermore, the optimum H<sub>2</sub> evolution and the k value attained 20 µmol and 1.573 h<sup>−1</sup>, respectively, after 12 h of visible light irradiation. The surface plasmon resonance effect of Ag NPs and the charge transfer between the two components of the photocatalyst, strongly promote generation of photoinduced charge carriers while suppressing their recombination. These factors are held responsible for the enhanced visible light photocatalytic performance of Ag/C<sub>3</sub>N<sub>4</sub>. Our methodology will provide guidance for the design and synthesis of plasmon-enhanced visible light photocatalysts derived from Ag NPs and g-C<sub>3</sub>N<sub>4</sub> and their applications in environmental remediation and green energy development.</p></div>\",\"PeriodicalId\":101081,\"journal\":{\"name\":\"Resources Chemicals and Materials\",\"volume\":\"1 1\",\"pages\":\"Pages 1-7\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772443321000040/pdfft?md5=77c55a72ad698e391536c54301bf3802&pid=1-s2.0-S2772443321000040-main.pdf\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Chemicals and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772443321000040\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Chemicals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772443321000040","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

摘要

采用常规工艺制备了负载g-C3N4光催化剂(Ag/C3N4)的等离子体纳米银(NPs)。充分表征的Ag/C3N4光催化剂在降解甲基橙(MO)和水裂解析氢过程中表现出优异的稳定性和显著增强的可见光驱动光催化性能。当Ag/C3N4质量分数为1.0 wt%时,MO降解的最高反应速率为0.0294 min−1,是g-C3N4单独反应速率0.0129 min−1的2.3倍。在可见光照射12 h后,H2的最佳析出量为20µmol, k值为1.573 h−1。Ag NPs的表面等离子体共振效应和光催化剂两组分之间的电荷转移,强烈地促进了光诱导载流子的产生,同时抑制了它们的重组。这些因素被认为是Ag/C3N4可见光催化性能增强的原因。我们的方法将为Ag NPs和g-C3N4衍生的等离子体增强可见光催化剂的设计和合成及其在环境修复和绿色能源开发中的应用提供指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Plasmonic Ag nanoparticles decorated g-C3N4 for enhanced visible-light driven photocatalytic degradation and H2 production

The plasmonic Ag nanoparticles (NPs) loaded g-C3N4 photocatalysts (Ag/C3N4) were successfully prepared via a conventional procedure. The fully characterized Ag/C3N4 photocatalysts exhibited excellent stability and greatly enhanced visible light-driven photocatalytic performance both in the degradation of methyl orange (MO) and H2 evolution from water splitting. The 1.0 wt% Ag/C3N4 allowed the highest reaction rate of 0.0294 min−1 to be obtained in the MO degradation, which is about 2.3 times higher than the reaction rate of g-C3N4 alone of 0.0129 min−1. Furthermore, the optimum H2 evolution and the k value attained 20 µmol and 1.573 h−1, respectively, after 12 h of visible light irradiation. The surface plasmon resonance effect of Ag NPs and the charge transfer between the two components of the photocatalyst, strongly promote generation of photoinduced charge carriers while suppressing their recombination. These factors are held responsible for the enhanced visible light photocatalytic performance of Ag/C3N4. Our methodology will provide guidance for the design and synthesis of plasmon-enhanced visible light photocatalysts derived from Ag NPs and g-C3N4 and their applications in environmental remediation and green energy development.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.20
自引率
0.00%
发文量
0
期刊最新文献
Outside Front Cover Table of Contents Outside Back Cover On controllability of fluidized bed reduction of iron ore by CH4 for selective formation of magnetite Organics-based Aqueous Batteries: Concept for Stationary Energy Storage with Resource Feasibility
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1