{"title":"槟榔皮Betara品种液体烟挥发性物质的鉴定及成分分析","authors":"Kamalia Muliyanti, Chusnul Hidayat, Supriyadi Supriyadi","doi":"10.22146/agritech.63605","DOIUrl":null,"url":null,"abstract":"The seeds of Areca nut plants hold significant economic value, with a remarkable total production of 65,295.89 tons. However, the husk, constituting 50% to 75% of the fruit, are persistently discarded. This study aims to explore the conversion of Areca nut waste into liquid smoke with specific physical properties and chemical composition. It uses GC-MS to identify volatile chemicals in liquid smoke and carries out a distillation process using a glass column containing natural zeolite for purification. Furthermore, the pyrolysis method is employed at a varying temperature of 150 °C, 250 °C, 350 °C, and 450 °C for 3 hours to process the waste into liquid smoke. The study determines the chemical composition of total acid, phenol, and carbonyl, which range from 1.34% to 3.09%, 0.37% to 0.42%, and 6.84% to 7.46%, respectively. The physical properties of crude liquid smoke in terms of yield range from 16.93% to 31.49%, while the color brightness varies from 25.02 to 57.46. The result shows that liquid smoke comprises 13 acidic, 20 carbonyl, and 6 phenolic compounds, contributing to the aroma. In addition, temperature of the pyrolysis process affects the formation of liquid smoke and the corresponding compounds contained in Areca husk.","PeriodicalId":7563,"journal":{"name":"agriTECH","volume":"67 1","pages":""},"PeriodicalIF":0.2000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Identification and Composition of Volatile Compounds in Liquid Smoke Derived from Betara Variety of Areca catechu Husk\",\"authors\":\"Kamalia Muliyanti, Chusnul Hidayat, Supriyadi Supriyadi\",\"doi\":\"10.22146/agritech.63605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The seeds of Areca nut plants hold significant economic value, with a remarkable total production of 65,295.89 tons. However, the husk, constituting 50% to 75% of the fruit, are persistently discarded. This study aims to explore the conversion of Areca nut waste into liquid smoke with specific physical properties and chemical composition. It uses GC-MS to identify volatile chemicals in liquid smoke and carries out a distillation process using a glass column containing natural zeolite for purification. Furthermore, the pyrolysis method is employed at a varying temperature of 150 °C, 250 °C, 350 °C, and 450 °C for 3 hours to process the waste into liquid smoke. The study determines the chemical composition of total acid, phenol, and carbonyl, which range from 1.34% to 3.09%, 0.37% to 0.42%, and 6.84% to 7.46%, respectively. The physical properties of crude liquid smoke in terms of yield range from 16.93% to 31.49%, while the color brightness varies from 25.02 to 57.46. The result shows that liquid smoke comprises 13 acidic, 20 carbonyl, and 6 phenolic compounds, contributing to the aroma. In addition, temperature of the pyrolysis process affects the formation of liquid smoke and the corresponding compounds contained in Areca husk.\",\"PeriodicalId\":7563,\"journal\":{\"name\":\"agriTECH\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2023-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"agriTECH\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.22146/agritech.63605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"agriTECH","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22146/agritech.63605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AGRONOMY","Score":null,"Total":0}
Identification and Composition of Volatile Compounds in Liquid Smoke Derived from Betara Variety of Areca catechu Husk
The seeds of Areca nut plants hold significant economic value, with a remarkable total production of 65,295.89 tons. However, the husk, constituting 50% to 75% of the fruit, are persistently discarded. This study aims to explore the conversion of Areca nut waste into liquid smoke with specific physical properties and chemical composition. It uses GC-MS to identify volatile chemicals in liquid smoke and carries out a distillation process using a glass column containing natural zeolite for purification. Furthermore, the pyrolysis method is employed at a varying temperature of 150 °C, 250 °C, 350 °C, and 450 °C for 3 hours to process the waste into liquid smoke. The study determines the chemical composition of total acid, phenol, and carbonyl, which range from 1.34% to 3.09%, 0.37% to 0.42%, and 6.84% to 7.46%, respectively. The physical properties of crude liquid smoke in terms of yield range from 16.93% to 31.49%, while the color brightness varies from 25.02 to 57.46. The result shows that liquid smoke comprises 13 acidic, 20 carbonyl, and 6 phenolic compounds, contributing to the aroma. In addition, temperature of the pyrolysis process affects the formation of liquid smoke and the corresponding compounds contained in Areca husk.