两类大样本协方差矩阵的比较

IF 1.2 2区 数学 Q2 STATISTICS & PROBABILITY Annales De L Institut Henri Poincare-probabilites Et Statistiques Pub Date : 2014-05-01 DOI:10.1214/12-AIHP506
G. Pan
{"title":"两类大样本协方差矩阵的比较","authors":"G. Pan","doi":"10.1214/12-AIHP506","DOIUrl":null,"url":null,"abstract":"Let {X ij }, i, j = · · · , be a double array of independent and identically distributed (i.i.d.) real random variables with EX 11 = µ, E|X 11 − µ| 2 = 1 and E|X 11 | 4 < ∞. Consider sample covariance matrices (with/without empirical centering) S = 1 n n j=1 (s j − ¯ s)(s j − ¯ s) T and S = 1 n n j=1 s j s T j , where ¯ s = 1 n n j=1 s j and s j = T 1/2 n (X 1j , · · · , X pj) T with (T 1/2 n) 2 = T n , non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of S and S are different as n → ∞ with p/n approaching a positive constant. Moreover , it is also proved that such a different behavior is not observed in the average behavior of eigenvectors.","PeriodicalId":7902,"journal":{"name":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","volume":"15 1","pages":"655-677"},"PeriodicalIF":1.2000,"publicationDate":"2014-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":"{\"title\":\"Comparison between two types of large sample covariance matrices\",\"authors\":\"G. Pan\",\"doi\":\"10.1214/12-AIHP506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Let {X ij }, i, j = · · · , be a double array of independent and identically distributed (i.i.d.) real random variables with EX 11 = µ, E|X 11 − µ| 2 = 1 and E|X 11 | 4 < ∞. Consider sample covariance matrices (with/without empirical centering) S = 1 n n j=1 (s j − ¯ s)(s j − ¯ s) T and S = 1 n n j=1 s j s T j , where ¯ s = 1 n n j=1 s j and s j = T 1/2 n (X 1j , · · · , X pj) T with (T 1/2 n) 2 = T n , non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of S and S are different as n → ∞ with p/n approaching a positive constant. Moreover , it is also proved that such a different behavior is not observed in the average behavior of eigenvectors.\",\"PeriodicalId\":7902,\"journal\":{\"name\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"volume\":\"15 1\",\"pages\":\"655-677\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2014-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"35\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales De L Institut Henri Poincare-probabilites Et Statistiques\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1214/12-AIHP506\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales De L Institut Henri Poincare-probabilites Et Statistiques","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1214/12-AIHP506","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 35

摘要

设{X ij}, i, j =···为独立同分布(i.i.d)实数随机变量的双数组,其中EX 11 =µ,E|X 11−µ| 2 = 1,E|X 11 | 4 <∞。考虑样本协方差矩阵(有/没有经验定心)S =1 n n j=1 (S j−¯S)(S j−¯S) T和S =1 n n j=1 S j S T j,其中¯S =1 n n j=1 S j和S j= t1 /2 n (X 1j,···,X pj) T with (T 1/2 n) 2 = T n,非随机对称非负定矩阵。证明了当n→∞且p/n趋近于正常数时S和S的特征值统计量的中心极限定理是不同的。此外,还证明了在特征向量的平均行为中没有观察到这种不同的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparison between two types of large sample covariance matrices
Let {X ij }, i, j = · · · , be a double array of independent and identically distributed (i.i.d.) real random variables with EX 11 = µ, E|X 11 − µ| 2 = 1 and E|X 11 | 4 < ∞. Consider sample covariance matrices (with/without empirical centering) S = 1 n n j=1 (s j − ¯ s)(s j − ¯ s) T and S = 1 n n j=1 s j s T j , where ¯ s = 1 n n j=1 s j and s j = T 1/2 n (X 1j , · · · , X pj) T with (T 1/2 n) 2 = T n , non-random symmetric non-negative definite matrix. It is proved that central limit theorems of eigenvalue statistics of S and S are different as n → ∞ with p/n approaching a positive constant. Moreover , it is also proved that such a different behavior is not observed in the average behavior of eigenvectors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.70
自引率
0.00%
发文量
85
审稿时长
6-12 weeks
期刊介绍: The Probability and Statistics section of the Annales de l’Institut Henri Poincaré is an international journal which publishes high quality research papers. The journal deals with all aspects of modern probability theory and mathematical statistics, as well as with their applications.
期刊最新文献
Limit distributions of branching Markov chains Tightness of discrete Gibbsian line ensembles with exponential interaction Hamiltonians Functional CLT for non-Hermitian random matrices Reflecting Brownian motion in generalized parabolic domains: Explosion and superdiffusivity From the asymmetric simple exclusion processes to the stationary measures of the KPZ fixed point on an interval
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1