{"title":"金属微结构对肖特基二极管击穿机理的影响","authors":"S. Askerov, M. Gasanov, L. KAbdullayeva","doi":"10.18282/MPC.V1I1.565","DOIUrl":null,"url":null,"abstract":"In this paper, the influence of the microstructure of a metal on the breakdown mechanism of diodes with a Schottky barrier is studied. It is shown that in electronic processes occurring in the contact between a metal and a semi-conductor, the metal plays a very active role and is a more important contact partner than a semiconductor. Unlike the known mechanisms of breakdown of diodes (avalanche, tunnel and thermal), another mechanism is proposed in this paper - the geometric mechanism of the reverse current flow of Schottky diodes made using a metal with a poly-crystalline structure. The polycrystallinity of a metal transforms a homogeneous contact into a complex system, which consists of parallel-connected multiple elementary contacts having different properties and parameters.","PeriodicalId":7338,"journal":{"name":"Advances in Materials Physics and Chemistry","volume":"55 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"The Influence of the Metal Microstructure on the Breakdown Mechanism of Schottky Diodes\",\"authors\":\"S. Askerov, M. Gasanov, L. KAbdullayeva\",\"doi\":\"10.18282/MPC.V1I1.565\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, the influence of the microstructure of a metal on the breakdown mechanism of diodes with a Schottky barrier is studied. It is shown that in electronic processes occurring in the contact between a metal and a semi-conductor, the metal plays a very active role and is a more important contact partner than a semiconductor. Unlike the known mechanisms of breakdown of diodes (avalanche, tunnel and thermal), another mechanism is proposed in this paper - the geometric mechanism of the reverse current flow of Schottky diodes made using a metal with a poly-crystalline structure. The polycrystallinity of a metal transforms a homogeneous contact into a complex system, which consists of parallel-connected multiple elementary contacts having different properties and parameters.\",\"PeriodicalId\":7338,\"journal\":{\"name\":\"Advances in Materials Physics and Chemistry\",\"volume\":\"55 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-10-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Materials Physics and Chemistry\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18282/MPC.V1I1.565\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Materials Physics and Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18282/MPC.V1I1.565","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The Influence of the Metal Microstructure on the Breakdown Mechanism of Schottky Diodes
In this paper, the influence of the microstructure of a metal on the breakdown mechanism of diodes with a Schottky barrier is studied. It is shown that in electronic processes occurring in the contact between a metal and a semi-conductor, the metal plays a very active role and is a more important contact partner than a semiconductor. Unlike the known mechanisms of breakdown of diodes (avalanche, tunnel and thermal), another mechanism is proposed in this paper - the geometric mechanism of the reverse current flow of Schottky diodes made using a metal with a poly-crystalline structure. The polycrystallinity of a metal transforms a homogeneous contact into a complex system, which consists of parallel-connected multiple elementary contacts having different properties and parameters.