基于数据驱动和模型的锂离子电池建模与参数辨识混合方法

Bin Gou, Yan Xu, X. Feng
{"title":"基于数据驱动和模型的锂离子电池建模与参数辨识混合方法","authors":"Bin Gou, Yan Xu, X. Feng","doi":"10.1109/ITECAsia-Pacific56316.2022.9942207","DOIUrl":null,"url":null,"abstract":"An accurate and practical model of lithium-ion batteries (LIBs) is necessary for state and health monitoring and battery energy management. This paper proposes a hybrid method for dynamic modeling and parameter identification for LIBs. A fractional-order model (FOM) with free derivative orders is proposed to accurately describe electrochemical dynamic behaviors of the LIBs. Two constant phase elements (CPE) and a Warburg component are used to describe the impedance characteristics of the LIBs. Then, an ensemble learning structure based on random forests (RF) is designed to accurately extract the mapping relationship between the open circuit voltage (OCV) and state of charge (SOC) at different temperatures. Based on the dynamic stress test (DST) dataset, particle swarm optimization (PSO) algorithm is used to optimally identify the parameters of model by comprehensively considering the identification accuracy and efficiency. Finally, the accuracy and robustness of the proposed FOM are verified and compared at different temperatures using the highly dynamic US06 highway driving schedule and the federal urban driving schedule (FUDS) test data. Compared with the second-order model with curve fitting methods, the proposed method has an overall higher accuracy and robustness at all temperatures and works well for low and high SOC ranges.","PeriodicalId":45126,"journal":{"name":"Asia-Pacific Journal-Japan Focus","volume":"4 1","pages":"1-6"},"PeriodicalIF":0.2000,"publicationDate":"2022-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Hybrid Data-Driven and Model-based Method for Modeling and Parameter Identification of Lithium-Ion Batteries\",\"authors\":\"Bin Gou, Yan Xu, X. Feng\",\"doi\":\"10.1109/ITECAsia-Pacific56316.2022.9942207\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An accurate and practical model of lithium-ion batteries (LIBs) is necessary for state and health monitoring and battery energy management. This paper proposes a hybrid method for dynamic modeling and parameter identification for LIBs. A fractional-order model (FOM) with free derivative orders is proposed to accurately describe electrochemical dynamic behaviors of the LIBs. Two constant phase elements (CPE) and a Warburg component are used to describe the impedance characteristics of the LIBs. Then, an ensemble learning structure based on random forests (RF) is designed to accurately extract the mapping relationship between the open circuit voltage (OCV) and state of charge (SOC) at different temperatures. Based on the dynamic stress test (DST) dataset, particle swarm optimization (PSO) algorithm is used to optimally identify the parameters of model by comprehensively considering the identification accuracy and efficiency. Finally, the accuracy and robustness of the proposed FOM are verified and compared at different temperatures using the highly dynamic US06 highway driving schedule and the federal urban driving schedule (FUDS) test data. Compared with the second-order model with curve fitting methods, the proposed method has an overall higher accuracy and robustness at all temperatures and works well for low and high SOC ranges.\",\"PeriodicalId\":45126,\"journal\":{\"name\":\"Asia-Pacific Journal-Japan Focus\",\"volume\":\"4 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.2000,\"publicationDate\":\"2022-10-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Asia-Pacific Journal-Japan Focus\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9942207\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"AREA STUDIES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Asia-Pacific Journal-Japan Focus","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITECAsia-Pacific56316.2022.9942207","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"AREA STUDIES","Score":null,"Total":0}
引用次数: 0

摘要

一个准确实用的锂离子电池模型对于锂离子电池的状态和健康监测以及电池能量管理是必要的。本文提出了一种混合的lib动态建模和参数辨识方法。提出了一种具有自由导数阶数的分数阶模型(FOM)来准确描述锂离子电池的电化学动力学行为。两个恒相元件(CPE)和一个Warburg元件被用来描述lib的阻抗特性。然后,设计了一种基于随机森林(RF)的集成学习结构,以准确提取不同温度下开路电压(OCV)和荷电状态(SOC)之间的映射关系。基于动态应力测试(DST)数据集,综合考虑识别精度和效率,采用粒子群优化算法(PSO)对模型参数进行最优识别。最后,利用高动态US06公路行驶计划和联邦城市行驶计划(FUDS)测试数据,验证了所提FOM在不同温度下的准确性和鲁棒性。与二阶模型曲线拟合方法相比,该方法在所有温度下都具有更高的精度和鲁棒性,并且在低SOC和高SOC范围内都能很好地工作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Hybrid Data-Driven and Model-based Method for Modeling and Parameter Identification of Lithium-Ion Batteries
An accurate and practical model of lithium-ion batteries (LIBs) is necessary for state and health monitoring and battery energy management. This paper proposes a hybrid method for dynamic modeling and parameter identification for LIBs. A fractional-order model (FOM) with free derivative orders is proposed to accurately describe electrochemical dynamic behaviors of the LIBs. Two constant phase elements (CPE) and a Warburg component are used to describe the impedance characteristics of the LIBs. Then, an ensemble learning structure based on random forests (RF) is designed to accurately extract the mapping relationship between the open circuit voltage (OCV) and state of charge (SOC) at different temperatures. Based on the dynamic stress test (DST) dataset, particle swarm optimization (PSO) algorithm is used to optimally identify the parameters of model by comprehensively considering the identification accuracy and efficiency. Finally, the accuracy and robustness of the proposed FOM are verified and compared at different temperatures using the highly dynamic US06 highway driving schedule and the federal urban driving schedule (FUDS) test data. Compared with the second-order model with curve fitting methods, the proposed method has an overall higher accuracy and robustness at all temperatures and works well for low and high SOC ranges.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
8
期刊最新文献
An Inertia Adjustment Control Strategy of Grid-Forming Electric Vehicle for V2G Application An Improved Control Strategy of PM-Assisted Synchronous Reluctance Machines Based on an Extended State Observer Comparison and evaluation of the thermal performance between SiC-MOSFET and Si-IGBT Analysis and Design of Passive Damping for LC-Equipped Permanent-Magnet Synchronous Machine Drive System Research on dynamic pricing strategy of electric material distribution vehicle based on master-slave game and multi-hot code
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1