{"title":"藻类生物传感器在废水监测中的应用前景综述","authors":"Krishnendu Pal, S. Mona, Sujata, Bansal Deepak","doi":"10.2174/2210681213666230517123150","DOIUrl":null,"url":null,"abstract":"\n\nFor biomass production and bioremediation, algae have been extensively exploited for bio-sensing applications in wastewater monitoring. Their advantages include the coupling of suitable bioreceptor for monitoring photosynthesis oxygen, their potential to be integrated into dual transduction miniaturized devices and detect the effect due to pollutants present in water with continuous monitoring of the environment. Microalgae live in water and are photosynthetic microorganisms that are very sensitive and reactive toward any change in the environment. And also able to detect any trace amount of pollutants. The performance of algal biosensors towards pollutants represents a good alternative to other developing sensors. In the algal biosensor, the algal cell is entrapped in galling material (Alginate, Carrageenan) and immobilized cells for stabilization with ions (Ca2+, K+). Genetically modified biosensor overcomes the limitation of natural biosensor. Whole-cell biosensors are highly sensitive to herbicides in wastewater, and many other bioreceptor of algal cells those sensitive to different types of pollutants. The present algal sensor is much smaller, valid support in smart agriculture, environmentally friendly and less expensive, the easily accessible.\n","PeriodicalId":38913,"journal":{"name":"Nanoscience and Nanotechnology - Asia","volume":"21 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2023-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mini Review on the Potential of Algal Biosensors in Wastewater Monitoring\",\"authors\":\"Krishnendu Pal, S. Mona, Sujata, Bansal Deepak\",\"doi\":\"10.2174/2210681213666230517123150\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n\\nFor biomass production and bioremediation, algae have been extensively exploited for bio-sensing applications in wastewater monitoring. Their advantages include the coupling of suitable bioreceptor for monitoring photosynthesis oxygen, their potential to be integrated into dual transduction miniaturized devices and detect the effect due to pollutants present in water with continuous monitoring of the environment. Microalgae live in water and are photosynthetic microorganisms that are very sensitive and reactive toward any change in the environment. And also able to detect any trace amount of pollutants. The performance of algal biosensors towards pollutants represents a good alternative to other developing sensors. In the algal biosensor, the algal cell is entrapped in galling material (Alginate, Carrageenan) and immobilized cells for stabilization with ions (Ca2+, K+). Genetically modified biosensor overcomes the limitation of natural biosensor. Whole-cell biosensors are highly sensitive to herbicides in wastewater, and many other bioreceptor of algal cells those sensitive to different types of pollutants. The present algal sensor is much smaller, valid support in smart agriculture, environmentally friendly and less expensive, the easily accessible.\\n\",\"PeriodicalId\":38913,\"journal\":{\"name\":\"Nanoscience and Nanotechnology - Asia\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscience and Nanotechnology - Asia\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2174/2210681213666230517123150\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscience and Nanotechnology - Asia","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/2210681213666230517123150","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
Mini Review on the Potential of Algal Biosensors in Wastewater Monitoring
For biomass production and bioremediation, algae have been extensively exploited for bio-sensing applications in wastewater monitoring. Their advantages include the coupling of suitable bioreceptor for monitoring photosynthesis oxygen, their potential to be integrated into dual transduction miniaturized devices and detect the effect due to pollutants present in water with continuous monitoring of the environment. Microalgae live in water and are photosynthetic microorganisms that are very sensitive and reactive toward any change in the environment. And also able to detect any trace amount of pollutants. The performance of algal biosensors towards pollutants represents a good alternative to other developing sensors. In the algal biosensor, the algal cell is entrapped in galling material (Alginate, Carrageenan) and immobilized cells for stabilization with ions (Ca2+, K+). Genetically modified biosensor overcomes the limitation of natural biosensor. Whole-cell biosensors are highly sensitive to herbicides in wastewater, and many other bioreceptor of algal cells those sensitive to different types of pollutants. The present algal sensor is much smaller, valid support in smart agriculture, environmentally friendly and less expensive, the easily accessible.
期刊介绍:
Nanoscience & Nanotechnology-Asia publishes expert reviews, original research articles, letters and guest edited issues on all the most recent advances in nanoscience and nanotechnology with an emphasis on research in Asia and Japan. All aspects of the field are represented including chemistry, physics, materials science, biology and engineering mainly covering the following; synthesis, characterization, assembly, theory, and simulation of nanostructures (nanomaterials and assemblies, nanodevices, nano-bubbles, nano-droplets, nanofluidics, and self-assembled structures), nanofabrication, nanobiotechnology, nanomedicine and methods and tools for nanoscience and nanotechnology.