J. Ludwick, A. Iqbal, D. Gortat, J. D. Cook, M. Cahay, Peng Zhang, T. Back, S. Fairchild, M. Sparkes, W. O'Neill
{"title":"微孔金表面二次电子产率的角依赖性","authors":"J. Ludwick, A. Iqbal, D. Gortat, J. D. Cook, M. Cahay, Peng Zhang, T. Back, S. Fairchild, M. Sparkes, W. O'Neill","doi":"10.1116/6.0000346","DOIUrl":null,"url":null,"abstract":"We report exhaustive measurements of the secondary electron yield (SEY) from a gold film containing an array of micropores as a function of the angle of incidence of the primary electrons. The SEY measurements are in good agreement with Monte-Carlo (MC) simulations. A highly accurate empirical fit to the SEY data as a function of the incident electron impact angle is also proposed. In this study, the micropores have aspect ratios (ratio of pore height over pore diameter) ranging from about 1.5 to 3.5. The effect of the pore array density (porosity) and pore aspect ratio is analyzed in greater detail. It is found that increasing the pore aspect ratio and porosity leads to a sharp reduction in the total SEY in agreement with MC simulations.","PeriodicalId":17652,"journal":{"name":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","volume":"34 1","pages":"054001"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Angular dependence of secondary electron yield from microporous gold surfaces\",\"authors\":\"J. Ludwick, A. Iqbal, D. Gortat, J. D. Cook, M. Cahay, Peng Zhang, T. Back, S. Fairchild, M. Sparkes, W. O'Neill\",\"doi\":\"10.1116/6.0000346\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report exhaustive measurements of the secondary electron yield (SEY) from a gold film containing an array of micropores as a function of the angle of incidence of the primary electrons. The SEY measurements are in good agreement with Monte-Carlo (MC) simulations. A highly accurate empirical fit to the SEY data as a function of the incident electron impact angle is also proposed. In this study, the micropores have aspect ratios (ratio of pore height over pore diameter) ranging from about 1.5 to 3.5. The effect of the pore array density (porosity) and pore aspect ratio is analyzed in greater detail. It is found that increasing the pore aspect ratio and porosity leads to a sharp reduction in the total SEY in agreement with MC simulations.\",\"PeriodicalId\":17652,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"volume\":\"34 1\",\"pages\":\"054001\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0000346\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology. B. Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0000346","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Angular dependence of secondary electron yield from microporous gold surfaces
We report exhaustive measurements of the secondary electron yield (SEY) from a gold film containing an array of micropores as a function of the angle of incidence of the primary electrons. The SEY measurements are in good agreement with Monte-Carlo (MC) simulations. A highly accurate empirical fit to the SEY data as a function of the incident electron impact angle is also proposed. In this study, the micropores have aspect ratios (ratio of pore height over pore diameter) ranging from about 1.5 to 3.5. The effect of the pore array density (porosity) and pore aspect ratio is analyzed in greater detail. It is found that increasing the pore aspect ratio and porosity leads to a sharp reduction in the total SEY in agreement with MC simulations.