用于移动设备动作识别的46.1 fps全局匹配光流估计处理器

Juhyoung Lee, Changhyeon Kim, Sungpill Choi, Dongjoo Shin, Sanghoon Kang, H. Yoo
{"title":"用于移动设备动作识别的46.1 fps全局匹配光流估计处理器","authors":"Juhyoung Lee, Changhyeon Kim, Sungpill Choi, Dongjoo Shin, Sanghoon Kang, H. Yoo","doi":"10.1109/ISCAS.2018.8351177","DOIUrl":null,"url":null,"abstract":"A real-time global matching optical flow estimation (OFE) processor is proposed for action recognition in mobile devices. The global OFE requires a large number of external memory accesses (EMAs) and matrix computations, thus it is incompatible on mobile devices with real-time constraints. For real-time OFE on mobile devices, this paper proposes two key features, both of which to reduce the required memory bandwidth and a number of computations: 1) Tile-based hierarchical OFE enables intermediate data to be processed within 328 KB on-chip memory without external memory access. 2) Background skipping eliminates redundant matrix computation for zero optical flow region. Therefore, the proposed features reduce external memory bandwidth and computation by 99.7 % and 50.7 %, respectively. The proposed 4 mm2 OFE processor is implemented in 65 nm CMOS technology, and it achieves real-time OFE of 46.1 frames-per-second (fps) throughput for an image resolution of QVGA (320×240) and the resulting optical flow can be successfully used for action recognition.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"30 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A 46.1 fps Global Matching Optical Flow Estimation Processor for Action Recognition in Mobile Devices\",\"authors\":\"Juhyoung Lee, Changhyeon Kim, Sungpill Choi, Dongjoo Shin, Sanghoon Kang, H. Yoo\",\"doi\":\"10.1109/ISCAS.2018.8351177\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A real-time global matching optical flow estimation (OFE) processor is proposed for action recognition in mobile devices. The global OFE requires a large number of external memory accesses (EMAs) and matrix computations, thus it is incompatible on mobile devices with real-time constraints. For real-time OFE on mobile devices, this paper proposes two key features, both of which to reduce the required memory bandwidth and a number of computations: 1) Tile-based hierarchical OFE enables intermediate data to be processed within 328 KB on-chip memory without external memory access. 2) Background skipping eliminates redundant matrix computation for zero optical flow region. Therefore, the proposed features reduce external memory bandwidth and computation by 99.7 % and 50.7 %, respectively. The proposed 4 mm2 OFE processor is implemented in 65 nm CMOS technology, and it achieves real-time OFE of 46.1 frames-per-second (fps) throughput for an image resolution of QVGA (320×240) and the resulting optical flow can be successfully used for action recognition.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"30 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351177\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351177","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种用于移动设备动作识别的实时全局匹配光流估计(OFE)处理器。全局OFE需要大量的外部存储器访问(ema)和矩阵计算,因此在具有实时性限制的移动设备上不兼容。对于移动设备上的实时OFE,本文提出了两个关键特性,这两个特性都可以减少所需的内存带宽和计算量:1)基于tile的分层OFE可以在328 KB的片上内存中处理中间数据,而无需外部存储器访问。2)背景跳变消除了零光流区域的冗余矩阵计算。因此,所提出的特性可将外部内存带宽和计算量分别减少99.7%和50.7%。所提出的4 mm2 OFE处理器采用65 nm CMOS技术实现,在QVGA (320×240)图像分辨率下实现了46.1帧/秒(fps)的实时OFE吞吐量,所产生的光流可成功用于动作识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A 46.1 fps Global Matching Optical Flow Estimation Processor for Action Recognition in Mobile Devices
A real-time global matching optical flow estimation (OFE) processor is proposed for action recognition in mobile devices. The global OFE requires a large number of external memory accesses (EMAs) and matrix computations, thus it is incompatible on mobile devices with real-time constraints. For real-time OFE on mobile devices, this paper proposes two key features, both of which to reduce the required memory bandwidth and a number of computations: 1) Tile-based hierarchical OFE enables intermediate data to be processed within 328 KB on-chip memory without external memory access. 2) Background skipping eliminates redundant matrix computation for zero optical flow region. Therefore, the proposed features reduce external memory bandwidth and computation by 99.7 % and 50.7 %, respectively. The proposed 4 mm2 OFE processor is implemented in 65 nm CMOS technology, and it achieves real-time OFE of 46.1 frames-per-second (fps) throughput for an image resolution of QVGA (320×240) and the resulting optical flow can be successfully used for action recognition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors An Energy-Efficient 13-bit Zero-Crossing ΔΣ Capacitance-to-Digital Converter with 1 pF-to-10 nF Sensing Range Power Optimized Comparator Selecting Method For Stochastic ADC Brain-inspired recurrent neural network with plastic RRAM synapses On the Use of Approximate Multipliers in LMS Adaptive Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1