一种用于CXR病变检测的粗特征重用深度神经网络

Xinquan Yang, Xuechen Li, Linlin Shen, Min Cao, Changen Zhou
{"title":"一种用于CXR病变检测的粗特征重用深度神经网络","authors":"Xinquan Yang, Xuechen Li, Linlin Shen, Min Cao, Changen Zhou","doi":"10.1109/ITME53901.2021.00070","DOIUrl":null,"url":null,"abstract":"Lung disease screening using Chest x-ray (CXR) radiographs can obviously decrease the incidence of lung cancer. Using computer-aided diagnosis system to assist doctors in lung disease screening can greatly improve the diagnosis efficiency. In this paper, a coarse feature reuse deep neural network for CXR lesion detection is proposed. Firstly, we design a coarse feature reuse (CFR) block that can reuse low-level semantic features and extract high-level semantic information, which is used to replace the max-pooling layer in the shallow part of the network to achieve better feature extraction. A novel backbone network - RRCNet, which combines RepVGG block and Resblock, is proposed. The RepVggblock is used for better feature extraction at shallow layers and the Resblock is used for better feature fusion at deep layers. Extensive experiments on VinDr-CXR dataset demonstrate that our RRCNet-based detection network outperformes other classic detectors on both mAP (17.67%) and inference speed (0.1426s).","PeriodicalId":6774,"journal":{"name":"2021 11th International Conference on Information Technology in Medicine and Education (ITME)","volume":"12 1","pages":"307-313"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Coarse Feature Reuse Deep Neural Network for CXR Lesion Detection\",\"authors\":\"Xinquan Yang, Xuechen Li, Linlin Shen, Min Cao, Changen Zhou\",\"doi\":\"10.1109/ITME53901.2021.00070\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Lung disease screening using Chest x-ray (CXR) radiographs can obviously decrease the incidence of lung cancer. Using computer-aided diagnosis system to assist doctors in lung disease screening can greatly improve the diagnosis efficiency. In this paper, a coarse feature reuse deep neural network for CXR lesion detection is proposed. Firstly, we design a coarse feature reuse (CFR) block that can reuse low-level semantic features and extract high-level semantic information, which is used to replace the max-pooling layer in the shallow part of the network to achieve better feature extraction. A novel backbone network - RRCNet, which combines RepVGG block and Resblock, is proposed. The RepVggblock is used for better feature extraction at shallow layers and the Resblock is used for better feature fusion at deep layers. Extensive experiments on VinDr-CXR dataset demonstrate that our RRCNet-based detection network outperformes other classic detectors on both mAP (17.67%) and inference speed (0.1426s).\",\"PeriodicalId\":6774,\"journal\":{\"name\":\"2021 11th International Conference on Information Technology in Medicine and Education (ITME)\",\"volume\":\"12 1\",\"pages\":\"307-313\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 11th International Conference on Information Technology in Medicine and Education (ITME)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITME53901.2021.00070\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 11th International Conference on Information Technology in Medicine and Education (ITME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITME53901.2021.00070","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

使用胸部x线片进行肺部疾病筛查可以明显降低肺癌的发病率。利用计算机辅助诊断系统辅助医生进行肺部疾病筛查,可以大大提高诊断效率。本文提出了一种用于CXR损伤检测的粗特征复用深度神经网络。首先,我们设计了一个可以重用低级语义特征并提取高级语义信息的粗特征重用(CFR)块,用于取代网络浅层的最大池化层,以获得更好的特征提取;提出了一种结合RepVGG块和Resblock块的新型骨干网——RRCNet。RepVggblock用于更好的浅层特征提取,Resblock用于更好的深层特征融合。在vdr - cxr数据集上的大量实验表明,基于rrcnet的检测网络在mAP(17.67%)和推理速度(0.1426s)上都优于其他经典检测器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Coarse Feature Reuse Deep Neural Network for CXR Lesion Detection
Lung disease screening using Chest x-ray (CXR) radiographs can obviously decrease the incidence of lung cancer. Using computer-aided diagnosis system to assist doctors in lung disease screening can greatly improve the diagnosis efficiency. In this paper, a coarse feature reuse deep neural network for CXR lesion detection is proposed. Firstly, we design a coarse feature reuse (CFR) block that can reuse low-level semantic features and extract high-level semantic information, which is used to replace the max-pooling layer in the shallow part of the network to achieve better feature extraction. A novel backbone network - RRCNet, which combines RepVGG block and Resblock, is proposed. The RepVggblock is used for better feature extraction at shallow layers and the Resblock is used for better feature fusion at deep layers. Extensive experiments on VinDr-CXR dataset demonstrate that our RRCNet-based detection network outperformes other classic detectors on both mAP (17.67%) and inference speed (0.1426s).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Committees ITME 2021 Conference Organization Research on Assistant Diagnostic Method of TCM Based on BERT Drug-Drug Adverse Reactions Prediction Based On Signed Network Java Curriculum Design Concept that Integrates Design Thinking and Heuristic Teaching Keyword-based Data Augmentation Guided Chinese Medical Questions Classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1