{"title":"纳米银对甲型H1N1流感病毒和单纯疱疹病毒1型的体外杀病毒活性研究","authors":"","doi":"10.33263/lianbs124.136","DOIUrl":null,"url":null,"abstract":"Silver nanoparticles (AgNPs) have provided a broad spectrum of antiviral activity against some types of enveloped and non-enveloped viruses. Silver nanoparticles are currently the most widely commercialized nanomaterials. In recent times, viral infections are emerging as one of the most common diseases with high mortality in the human population. The present study investigates the antiviral efficacy of the silver nanoparticles synthesized by the green method against HSV-1 and H1N1 influenza viruses. Characterization studies revealed that the silver nanoparticles showed an average particle size of 47 nm with a surface plasmon resonance peak at 426 nm. Silver nanoparticles exhibited 50% cytotoxicity in Vero cells at 197 µg/mL concentration, and 50% Inhibitory concentration (IC50) against HSV-1 was observed at 19.6 μg/mL. Silver nanoparticles demonstrated > 1 log reduction in H1N1 influenza A virus at 17 µg/mL. These findings indicate that silver nanoparticles possess excellent antiviral activity, which can be suitably used in various formulations to eradicate the spread of viral infections.","PeriodicalId":18009,"journal":{"name":"Letters in Applied NanoBioScience","volume":"39 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"In vitro Virucidal Activity of Silver Nanoparticles against H1N1 Influenza A Virus and Herpes Simplex Virus-1\",\"authors\":\"\",\"doi\":\"10.33263/lianbs124.136\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Silver nanoparticles (AgNPs) have provided a broad spectrum of antiviral activity against some types of enveloped and non-enveloped viruses. Silver nanoparticles are currently the most widely commercialized nanomaterials. In recent times, viral infections are emerging as one of the most common diseases with high mortality in the human population. The present study investigates the antiviral efficacy of the silver nanoparticles synthesized by the green method against HSV-1 and H1N1 influenza viruses. Characterization studies revealed that the silver nanoparticles showed an average particle size of 47 nm with a surface plasmon resonance peak at 426 nm. Silver nanoparticles exhibited 50% cytotoxicity in Vero cells at 197 µg/mL concentration, and 50% Inhibitory concentration (IC50) against HSV-1 was observed at 19.6 μg/mL. Silver nanoparticles demonstrated > 1 log reduction in H1N1 influenza A virus at 17 µg/mL. These findings indicate that silver nanoparticles possess excellent antiviral activity, which can be suitably used in various formulations to eradicate the spread of viral infections.\",\"PeriodicalId\":18009,\"journal\":{\"name\":\"Letters in Applied NanoBioScience\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-10-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Letters in Applied NanoBioScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.33263/lianbs124.136\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Letters in Applied NanoBioScience","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33263/lianbs124.136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
In vitro Virucidal Activity of Silver Nanoparticles against H1N1 Influenza A Virus and Herpes Simplex Virus-1
Silver nanoparticles (AgNPs) have provided a broad spectrum of antiviral activity against some types of enveloped and non-enveloped viruses. Silver nanoparticles are currently the most widely commercialized nanomaterials. In recent times, viral infections are emerging as one of the most common diseases with high mortality in the human population. The present study investigates the antiviral efficacy of the silver nanoparticles synthesized by the green method against HSV-1 and H1N1 influenza viruses. Characterization studies revealed that the silver nanoparticles showed an average particle size of 47 nm with a surface plasmon resonance peak at 426 nm. Silver nanoparticles exhibited 50% cytotoxicity in Vero cells at 197 µg/mL concentration, and 50% Inhibitory concentration (IC50) against HSV-1 was observed at 19.6 μg/mL. Silver nanoparticles demonstrated > 1 log reduction in H1N1 influenza A virus at 17 µg/mL. These findings indicate that silver nanoparticles possess excellent antiviral activity, which can be suitably used in various formulations to eradicate the spread of viral infections.