一种新的基于高斯过程回归的光信噪比监测技术

Q3 Engineering 光电工程 Pub Date : 2021-01-15 DOI:10.12086/OEE.2021.200077
Yanhui Ran, H. Chunjie, Li Wei
{"title":"一种新的基于高斯过程回归的光信噪比监测技术","authors":"Yanhui Ran, H. Chunjie, Li Wei","doi":"10.12086/OEE.2021.200077","DOIUrl":null,"url":null,"abstract":"We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique that uses a commercially available widely tunable optical bandpass filter to sample the measured optical power as input features of Gaussian process regression (GPR) can accurately estimate the large dynamic range OSNR and is not affected by the configuration of the optical link, and has the characteristics of distributed and low cost. Experimental results for 32 Gbaud PDM-16QAM signals demonstrate OSNR monitoring with the root mean squared error (RMSE) of 0.429 dB and the mean absolute error (MAE) of 0.294 dB within a large OSNR range of -1 dB~30 dB. Moreover, our proposed technique is proved to be insensitive to chromatic dispersion, polarization mode dispersion, nonlinear effect, and cascaded filtering effect (CFE). Furthermore, our proposed technique has the potential to be employed for link monitoring at the intermediation nodes without knowing the transmission information and is more convenient to operate because no calibration is required.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel optical signal-to-noise ratio monitoring technique based on Gaussian process regression\",\"authors\":\"Yanhui Ran, H. Chunjie, Li Wei\",\"doi\":\"10.12086/OEE.2021.200077\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique that uses a commercially available widely tunable optical bandpass filter to sample the measured optical power as input features of Gaussian process regression (GPR) can accurately estimate the large dynamic range OSNR and is not affected by the configuration of the optical link, and has the characteristics of distributed and low cost. Experimental results for 32 Gbaud PDM-16QAM signals demonstrate OSNR monitoring with the root mean squared error (RMSE) of 0.429 dB and the mean absolute error (MAE) of 0.294 dB within a large OSNR range of -1 dB~30 dB. Moreover, our proposed technique is proved to be insensitive to chromatic dispersion, polarization mode dispersion, nonlinear effect, and cascaded filtering effect (CFE). Furthermore, our proposed technique has the potential to be employed for link monitoring at the intermediation nodes without knowing the transmission information and is more convenient to operate because no calibration is required.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-01-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2021.200077\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2021.200077","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文提出并实验验证了一种新型带内光信噪比(OSNR)监测技术,该技术利用市上可广泛调谐的光带通滤波器对测量的光功率进行采样作为高斯过程回归(GPR)的输入特征,可以准确估计大动态范围的OSNR,并且不受光链路配置的影响,具有分布式和低成本的特点。实验结果表明,在-1 dB~30 dB的大OSNR范围内,对32 Gbaud PDM-16QAM信号进行OSNR监测,均方根误差(RMSE)为0.429 dB,平均绝对误差(MAE)为0.294 dB。此外,我们的技术被证明对色散、偏振模色散、非线性效应和级联滤波效应(CFE)不敏感。此外,我们提出的技术有可能在不知道传输信息的情况下用于中介节点的链路监测,并且由于不需要校准,因此操作更方便。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A novel optical signal-to-noise ratio monitoring technique based on Gaussian process regression
We propose and experimentally demonstrate a novel in-band optical signal-to-noise ratio (OSNR) monitoring technique that uses a commercially available widely tunable optical bandpass filter to sample the measured optical power as input features of Gaussian process regression (GPR) can accurately estimate the large dynamic range OSNR and is not affected by the configuration of the optical link, and has the characteristics of distributed and low cost. Experimental results for 32 Gbaud PDM-16QAM signals demonstrate OSNR monitoring with the root mean squared error (RMSE) of 0.429 dB and the mean absolute error (MAE) of 0.294 dB within a large OSNR range of -1 dB~30 dB. Moreover, our proposed technique is proved to be insensitive to chromatic dispersion, polarization mode dispersion, nonlinear effect, and cascaded filtering effect (CFE). Furthermore, our proposed technique has the potential to be employed for link monitoring at the intermediation nodes without knowing the transmission information and is more convenient to operate because no calibration is required.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
期刊最新文献
The joint discriminative and generative learning for person re-identification of deep dual attention Fiber coupling technology of high brightness blue laser diode A few-shot learning based generative method for atmospheric polarization modelling Characteristics of wavefront correction using stacked liquid lens based on electrowetting-on-dielectric Research on joint coding for underwater single-photon video communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1