{"title":"自愈配电系统的动态重构与故障隔离","authors":"Anmar I. Arif, Shanshan Ma, Zhaoyu Wang","doi":"10.1109/TDC.2018.8440481","DOIUrl":null,"url":null,"abstract":"This paper proposes a new mathematical model for network reconfiguration and fault isolation in a self-healing distribution network. The proposed model dynamically operates automatic switches in the distribution network. The model includes a new approach to ensure network radiality by combining spanning tree constraints with a virtual network framework. Multiple faults and their associated clearance and recovery are taken into account. The mathematical model is formulated as a mixed integer linear program (MILP) that can be efficiently solved using commercial solvers such as CPLEX. The model is tested on a modified IEEE 123-bus distribution system with automatic switches, distributed generators (DGs) and energy storage system (ESS).","PeriodicalId":6568,"journal":{"name":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","volume":"1 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Dynamic Reconfiguration and Fault Isolation for a Self-Healing Distribution System\",\"authors\":\"Anmar I. Arif, Shanshan Ma, Zhaoyu Wang\",\"doi\":\"10.1109/TDC.2018.8440481\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a new mathematical model for network reconfiguration and fault isolation in a self-healing distribution network. The proposed model dynamically operates automatic switches in the distribution network. The model includes a new approach to ensure network radiality by combining spanning tree constraints with a virtual network framework. Multiple faults and their associated clearance and recovery are taken into account. The mathematical model is formulated as a mixed integer linear program (MILP) that can be efficiently solved using commercial solvers such as CPLEX. The model is tested on a modified IEEE 123-bus distribution system with automatic switches, distributed generators (DGs) and energy storage system (ESS).\",\"PeriodicalId\":6568,\"journal\":{\"name\":\"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"volume\":\"1 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-04-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TDC.2018.8440481\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE/PES Transmission and Distribution Conference and Exposition (T&D)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TDC.2018.8440481","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Dynamic Reconfiguration and Fault Isolation for a Self-Healing Distribution System
This paper proposes a new mathematical model for network reconfiguration and fault isolation in a self-healing distribution network. The proposed model dynamically operates automatic switches in the distribution network. The model includes a new approach to ensure network radiality by combining spanning tree constraints with a virtual network framework. Multiple faults and their associated clearance and recovery are taken into account. The mathematical model is formulated as a mixed integer linear program (MILP) that can be efficiently solved using commercial solvers such as CPLEX. The model is tested on a modified IEEE 123-bus distribution system with automatic switches, distributed generators (DGs) and energy storage system (ESS).