M. Mariello, E. Scarpa, L. Algieri, F. Guido, V. Mastronardi, A. Qualtieri, M. Vittorio
{"title":"基于金属化多孔PDMS和聚苯二烯- c的新型柔性接触分离模式摩擦电纳米发电机的机械能收集","authors":"M. Mariello, E. Scarpa, L. Algieri, F. Guido, V. Mastronardi, A. Qualtieri, M. Vittorio","doi":"10.1109/PowerMEMS49317.2019.71805307288","DOIUrl":null,"url":null,"abstract":"This paper reports the fabrication and preliminary characterization of a novel flexible triboelectric nanogenerator (TENG) which could be employed for driving future low-consumption wearable devices. The single-electrode device operates in contact-separation mode and it is based on a combination of a polysiloxane elastomer and a poly(para-xylylene). In particular, a poly(dimethylsiloxane) (PDMS) substrate was made porous and rough with a steam-curing step; then, it was metallized and an optimal substrate-electrodes adhesion was achieved. Finally, the structure was coated with a thin film of Parylene-C serving as friction layer. This material provides excellent conformability and high charge retaining capability. Performance preliminary tests were conducted by measuring the open-circuit voltage and power density under finger tapping ($\\sim$2N) at $\\sim$5Hz. The device exhibited a peak-to-peak voltage of 1.51÷3.82V and the peak of power density was $2.24mW/m^{2}$ at $\\sim$0.4M $\\omega$.","PeriodicalId":6648,"journal":{"name":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","volume":"1 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Mechanical energy harvesting through a novel flexible contact-separation mode triboelectric nanogenerator based on metallized porous PDMS and Parylene-C\",\"authors\":\"M. Mariello, E. Scarpa, L. Algieri, F. Guido, V. Mastronardi, A. Qualtieri, M. Vittorio\",\"doi\":\"10.1109/PowerMEMS49317.2019.71805307288\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the fabrication and preliminary characterization of a novel flexible triboelectric nanogenerator (TENG) which could be employed for driving future low-consumption wearable devices. The single-electrode device operates in contact-separation mode and it is based on a combination of a polysiloxane elastomer and a poly(para-xylylene). In particular, a poly(dimethylsiloxane) (PDMS) substrate was made porous and rough with a steam-curing step; then, it was metallized and an optimal substrate-electrodes adhesion was achieved. Finally, the structure was coated with a thin film of Parylene-C serving as friction layer. This material provides excellent conformability and high charge retaining capability. Performance preliminary tests were conducted by measuring the open-circuit voltage and power density under finger tapping ($\\\\sim$2N) at $\\\\sim$5Hz. The device exhibited a peak-to-peak voltage of 1.51÷3.82V and the peak of power density was $2.24mW/m^{2}$ at $\\\\sim$0.4M $\\\\omega$.\",\"PeriodicalId\":6648,\"journal\":{\"name\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"volume\":\"1 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PowerMEMS49317.2019.71805307288\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 19th International Conference on Micro and Nanotechnology for Power Generation and Energy Conversion Applications (PowerMEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PowerMEMS49317.2019.71805307288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mechanical energy harvesting through a novel flexible contact-separation mode triboelectric nanogenerator based on metallized porous PDMS and Parylene-C
This paper reports the fabrication and preliminary characterization of a novel flexible triboelectric nanogenerator (TENG) which could be employed for driving future low-consumption wearable devices. The single-electrode device operates in contact-separation mode and it is based on a combination of a polysiloxane elastomer and a poly(para-xylylene). In particular, a poly(dimethylsiloxane) (PDMS) substrate was made porous and rough with a steam-curing step; then, it was metallized and an optimal substrate-electrodes adhesion was achieved. Finally, the structure was coated with a thin film of Parylene-C serving as friction layer. This material provides excellent conformability and high charge retaining capability. Performance preliminary tests were conducted by measuring the open-circuit voltage and power density under finger tapping ($\sim$2N) at $\sim$5Hz. The device exhibited a peak-to-peak voltage of 1.51÷3.82V and the peak of power density was $2.24mW/m^{2}$ at $\sim$0.4M $\omega$.