直角工业机器人结构框架的参数化优化方法

Filip Gwardecki, P. Falkowski
{"title":"直角工业机器人结构框架的参数化优化方法","authors":"Filip Gwardecki, P. Falkowski","doi":"10.14313/jamris/3-2021/15","DOIUrl":null,"url":null,"abstract":"The paper presents an approach to parametric optimization with response surface methodology. This process was performed based on the design of a construction frame for a Cartesian industrial robot. The presented installation is dedicated to the real industrial pick-and-place application. Firstly, the case study was described with relevant information about the components involved. Then, the finite element model with constraints and loads, as well as the settings of the response surface optimization were discussed. The simulation was presented to the reader within all the stages with necessary details. Into consideration were taken six methods of creating response surfaces. Influence on the final optimization result and prediction accuracy of each one was presented. In the end, to validate the outcomes of the process, the static structural analysis of the setup was computed.The paper compares the impact of applying different methods of response surface generation on the results of parametric optimization. Moreover, it indicates the most vulnerable fragments of dynamically loaded elements made of construction profiles. Its results may be used to select appropriate settings in similar applications, mainly for frame structures.","PeriodicalId":37910,"journal":{"name":"Journal of Automation, Mobile Robotics and Intelligent Systems","volume":"17 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Approach Towards Parametric Optimisation of Construction Frames for Cartesian Industrial Robots\",\"authors\":\"Filip Gwardecki, P. Falkowski\",\"doi\":\"10.14313/jamris/3-2021/15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents an approach to parametric optimization with response surface methodology. This process was performed based on the design of a construction frame for a Cartesian industrial robot. The presented installation is dedicated to the real industrial pick-and-place application. Firstly, the case study was described with relevant information about the components involved. Then, the finite element model with constraints and loads, as well as the settings of the response surface optimization were discussed. The simulation was presented to the reader within all the stages with necessary details. Into consideration were taken six methods of creating response surfaces. Influence on the final optimization result and prediction accuracy of each one was presented. In the end, to validate the outcomes of the process, the static structural analysis of the setup was computed.The paper compares the impact of applying different methods of response surface generation on the results of parametric optimization. Moreover, it indicates the most vulnerable fragments of dynamically loaded elements made of construction profiles. Its results may be used to select appropriate settings in similar applications, mainly for frame structures.\",\"PeriodicalId\":37910,\"journal\":{\"name\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"volume\":\"17 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Automation, Mobile Robotics and Intelligent Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14313/jamris/3-2021/15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Automation, Mobile Robotics and Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14313/jamris/3-2021/15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种用响应面法进行参数优化的方法。该过程是基于笛卡尔工业机器人结构框架的设计进行的。所提出的装置是专门为真正的工业取放应用。首先,对案例研究进行了描述,并提供了所涉及组件的相关信息。然后,讨论了带约束和载荷的有限元模型,以及响应面优化的设置。模拟过程包括了所有阶段,并提供了必要的细节。考虑了六种生成响应面的方法。给出了各参数对最终优化结果和预测精度的影响。最后,为了验证该工艺的结果,对装置进行了静力结构分析。比较了采用不同的响应面生成方法对参数优化结果的影响。此外,它还指出了由建筑型材构成的动态加载单元的最脆弱的片段。其结果可用于在类似应用中选择适当的设置,主要用于框架结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Approach Towards Parametric Optimisation of Construction Frames for Cartesian Industrial Robots
The paper presents an approach to parametric optimization with response surface methodology. This process was performed based on the design of a construction frame for a Cartesian industrial robot. The presented installation is dedicated to the real industrial pick-and-place application. Firstly, the case study was described with relevant information about the components involved. Then, the finite element model with constraints and loads, as well as the settings of the response surface optimization were discussed. The simulation was presented to the reader within all the stages with necessary details. Into consideration were taken six methods of creating response surfaces. Influence on the final optimization result and prediction accuracy of each one was presented. In the end, to validate the outcomes of the process, the static structural analysis of the setup was computed.The paper compares the impact of applying different methods of response surface generation on the results of parametric optimization. Moreover, it indicates the most vulnerable fragments of dynamically loaded elements made of construction profiles. Its results may be used to select appropriate settings in similar applications, mainly for frame structures.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Automation, Mobile Robotics and Intelligent Systems
Journal of Automation, Mobile Robotics and Intelligent Systems Engineering-Control and Systems Engineering
CiteScore
1.10
自引率
0.00%
发文量
25
期刊介绍: Fundamentals of automation and robotics Applied automatics Mobile robots control Distributed systems Navigation Mechatronics systems in robotics Sensors and actuators Data transmission Biomechatronics Mobile computing
期刊最新文献
A Numerical Analysis Based Internet of Things (IOT) and Big Data Analytics to Minimize Energy Consumption in Smart Buildings Design of Small-Phase Time-Variant Low-pass Digital Fractional Differentiators and Integrators Comparative Analysis of CNN-Based Smart Pre-Trained Models for Object Detection on DOTA Research to Simulate the Ship’s Vibration Regeneration System using a 6-Degree Freedom Gough-Stewart Parallel Robot Effective Nonlinear Predictive and CTC-PID Control of Rigid Manipulators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1