{"title":"高效密集子空间聚类","authors":"Pan Ji, M. Salzmann, Hongdong Li","doi":"10.1109/WACV.2014.6836065","DOIUrl":null,"url":null,"abstract":"In this paper, we tackle the problem of clustering data points drawn from a union of linear (or affine) subspaces. To this end, we introduce an efficient subspace clustering algorithm that estimates dense connections between the points lying in the same subspace. In particular, instead of following the standard compressive sensing approach, we formulate subspace clustering as a Frobenius norm minimization problem, which inherently yields denser con- nections between the data points. While in the noise-free case we rely on the self-expressiveness of the observations, in the presence of noise we simultaneously learn a clean dictionary to represent the data. Our formulation lets us address the subspace clustering problem efficiently. More specifically, the solution can be obtained in closed-form for outlier-free observations, and by performing a series of linear operations in the presence of outliers. Interestingly, we show that our Frobenius norm formulation shares the same solution as the popular nuclear norm minimization approach when the data is free of any noise, or, in the case of corrupted data, when a clean dictionary is learned. Our experimental evaluation on motion segmentation and face clustering demonstrates the benefits of our algorithm in terms of clustering accuracy and efficiency.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"49 1","pages":"461-468"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":"{\"title\":\"Efficient dense subspace clustering\",\"authors\":\"Pan Ji, M. Salzmann, Hongdong Li\",\"doi\":\"10.1109/WACV.2014.6836065\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we tackle the problem of clustering data points drawn from a union of linear (or affine) subspaces. To this end, we introduce an efficient subspace clustering algorithm that estimates dense connections between the points lying in the same subspace. In particular, instead of following the standard compressive sensing approach, we formulate subspace clustering as a Frobenius norm minimization problem, which inherently yields denser con- nections between the data points. While in the noise-free case we rely on the self-expressiveness of the observations, in the presence of noise we simultaneously learn a clean dictionary to represent the data. Our formulation lets us address the subspace clustering problem efficiently. More specifically, the solution can be obtained in closed-form for outlier-free observations, and by performing a series of linear operations in the presence of outliers. Interestingly, we show that our Frobenius norm formulation shares the same solution as the popular nuclear norm minimization approach when the data is free of any noise, or, in the case of corrupted data, when a clean dictionary is learned. Our experimental evaluation on motion segmentation and face clustering demonstrates the benefits of our algorithm in terms of clustering accuracy and efficiency.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"49 1\",\"pages\":\"461-468\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"129\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6836065\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836065","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

摘要

在本文中,我们解决了从线性(或仿射)子空间并集中提取数据点的聚类问题。为此,我们引入了一种有效的子空间聚类算法,该算法估计位于同一子空间中的点之间的密集连接。特别是,我们没有遵循标准的压缩感知方法,而是将子空间聚类表述为Frobenius范数最小化问题,该问题固有地产生数据点之间更密集的连接。而在无噪声的情况下,我们依赖于观察的自我表达,在存在噪声的情况下,我们同时学习一个干净的字典来表示数据。我们的公式使我们能够有效地解决子空间聚类问题。更具体地说,对于无异常值的观测值,通过在存在异常值的情况下执行一系列线性操作,可以以封闭形式获得解。有趣的是,我们表明,当数据没有任何噪声时,或者在数据损坏的情况下,当学习干净的字典时,我们的Frobenius范数公式与流行的核范数最小化方法共享相同的解决方案。我们对运动分割和人脸聚类的实验评估表明了我们的算法在聚类精度和效率方面的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Efficient dense subspace clustering
In this paper, we tackle the problem of clustering data points drawn from a union of linear (or affine) subspaces. To this end, we introduce an efficient subspace clustering algorithm that estimates dense connections between the points lying in the same subspace. In particular, instead of following the standard compressive sensing approach, we formulate subspace clustering as a Frobenius norm minimization problem, which inherently yields denser con- nections between the data points. While in the noise-free case we rely on the self-expressiveness of the observations, in the presence of noise we simultaneously learn a clean dictionary to represent the data. Our formulation lets us address the subspace clustering problem efficiently. More specifically, the solution can be obtained in closed-form for outlier-free observations, and by performing a series of linear operations in the presence of outliers. Interestingly, we show that our Frobenius norm formulation shares the same solution as the popular nuclear norm minimization approach when the data is free of any noise, or, in the case of corrupted data, when a clean dictionary is learned. Our experimental evaluation on motion segmentation and face clustering demonstrates the benefits of our algorithm in terms of clustering accuracy and efficiency.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images. PathLDM: Text conditioned Latent Diffusion Model for Histopathology. Domain Generalization with Correlated Style Uncertainty. Semantic-aware Video Representation for Few-shot Action Recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1