Bor-Shyh Lin, Bor-Shing Lin, Wan-Chi Lee, F. Chong, Yue-Der Lin
{"title":"利用WHT自适应滤波器去除残余电力线干扰","authors":"Bor-Shyh Lin, Bor-Shing Lin, Wan-Chi Lee, F. Chong, Yue-Der Lin","doi":"10.1109/IEMBS.2002.1134433","DOIUrl":null,"url":null,"abstract":"Power-line interference is a common phenomenom in low-frequency biophysical measurement. The usual way of solving this is the use of a fixed bandwidth in an analog or digital notch filter. However, these methods are not very suitable when the power-line interference frequency is non-stationary. In this paper, an effective adaptive filter (ADF) structure is proposed to minimize the residual power-line interference without loss of reality. In order to obtain a satisfactory and acceptable convergence performance, the Walsh-Hadamard (WHT) transform is used in the ADF. Throughout many clinical measurements, the result of this structure is effective in eliminating EMI/EMC interference. However, to overcome the continuous changing frequency of power-line interference and to obtain a better convergence rate, a transform domain adaptive filter (TDADF) is used. An ECG result is shown after removing the power-line interference and its FFT.","PeriodicalId":60385,"journal":{"name":"中国地球物理学会年刊","volume":"6 1","pages":"155-156 vol.1"},"PeriodicalIF":0.0000,"publicationDate":"2002-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Removing residual power-line interference using WHT adaptive filter\",\"authors\":\"Bor-Shyh Lin, Bor-Shing Lin, Wan-Chi Lee, F. Chong, Yue-Der Lin\",\"doi\":\"10.1109/IEMBS.2002.1134433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Power-line interference is a common phenomenom in low-frequency biophysical measurement. The usual way of solving this is the use of a fixed bandwidth in an analog or digital notch filter. However, these methods are not very suitable when the power-line interference frequency is non-stationary. In this paper, an effective adaptive filter (ADF) structure is proposed to minimize the residual power-line interference without loss of reality. In order to obtain a satisfactory and acceptable convergence performance, the Walsh-Hadamard (WHT) transform is used in the ADF. Throughout many clinical measurements, the result of this structure is effective in eliminating EMI/EMC interference. However, to overcome the continuous changing frequency of power-line interference and to obtain a better convergence rate, a transform domain adaptive filter (TDADF) is used. An ECG result is shown after removing the power-line interference and its FFT.\",\"PeriodicalId\":60385,\"journal\":{\"name\":\"中国地球物理学会年刊\",\"volume\":\"6 1\",\"pages\":\"155-156 vol.1\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"中国地球物理学会年刊\",\"FirstCategoryId\":\"1089\",\"ListUrlMain\":\"https://doi.org/10.1109/IEMBS.2002.1134433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"中国地球物理学会年刊","FirstCategoryId":"1089","ListUrlMain":"https://doi.org/10.1109/IEMBS.2002.1134433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Removing residual power-line interference using WHT adaptive filter
Power-line interference is a common phenomenom in low-frequency biophysical measurement. The usual way of solving this is the use of a fixed bandwidth in an analog or digital notch filter. However, these methods are not very suitable when the power-line interference frequency is non-stationary. In this paper, an effective adaptive filter (ADF) structure is proposed to minimize the residual power-line interference without loss of reality. In order to obtain a satisfactory and acceptable convergence performance, the Walsh-Hadamard (WHT) transform is used in the ADF. Throughout many clinical measurements, the result of this structure is effective in eliminating EMI/EMC interference. However, to overcome the continuous changing frequency of power-line interference and to obtain a better convergence rate, a transform domain adaptive filter (TDADF) is used. An ECG result is shown after removing the power-line interference and its FFT.