{"title":"生物油升级用沸石基裂化催化剂研究进展","authors":"Nichaboon Chaihad , Surachai Karnjanakom , Abuliti Abudula , Guoqing Guan","doi":"10.1016/j.recm.2022.03.002","DOIUrl":null,"url":null,"abstract":"<div><p>Fast pyrolysis of biomass is an attractive way to produce bio-oil since it can convert most of biomass components directly into liquid fuel. However, the bio-oils obtained from such a fast pyrolysis process always have highly complex oxygenated compounds with high viscosity, serious corrosivity, and rather instability. Thus, before the raw bio-oils are used as fuel or chemical feedstock, they must be upgraded, especially deoxygenated. Cracking of bio-oils over porous solid catalysts such as zeolite-based catalysts at ambient pressure is considered one of effective ways for the bio-oil upgrading, especially in which hydrogen gas is not necessary. Herein, zeolite-based catalysts (mainly HZSM-5 based catalysts) for the upgrading of pyrolysis bio-oils are critically reviewed. The effects of porous structure, acidity and other parameters including biomass type, biomass/catalyst ratio and operation temperature on cracking activity, selectivity, stability and deactivation are summarized. While, the proposed mechanisms on the bio-oil upgrading over the zeolite-based catalysts and the possibility for the application of the developed catalysts in the industrial process are discussed. Furthermore, the main strategies including metal modification, construction of zeolites with a hierarchical structure and synthesis of special morphologies with hollow structure or core/shell structure and nanosheet structures for the improvement of deoxygenation property performance are introduced. It is expected to provide a guidance for the design and fabricate more excellent zeolite-based catalysts and their application for high-quality bio-oil production from fast biomass pyrolysis.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 2","pages":"Pages 167-183"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000186/pdfft?md5=e51486427e37ec243e7cc2636004414b&pid=1-s2.0-S2772443322000186-main.pdf","citationCount":"17","resultStr":"{\"title\":\"Zeolite-based cracking catalysts for bio-oil upgrading: A critical review\",\"authors\":\"Nichaboon Chaihad , Surachai Karnjanakom , Abuliti Abudula , Guoqing Guan\",\"doi\":\"10.1016/j.recm.2022.03.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fast pyrolysis of biomass is an attractive way to produce bio-oil since it can convert most of biomass components directly into liquid fuel. However, the bio-oils obtained from such a fast pyrolysis process always have highly complex oxygenated compounds with high viscosity, serious corrosivity, and rather instability. Thus, before the raw bio-oils are used as fuel or chemical feedstock, they must be upgraded, especially deoxygenated. Cracking of bio-oils over porous solid catalysts such as zeolite-based catalysts at ambient pressure is considered one of effective ways for the bio-oil upgrading, especially in which hydrogen gas is not necessary. Herein, zeolite-based catalysts (mainly HZSM-5 based catalysts) for the upgrading of pyrolysis bio-oils are critically reviewed. The effects of porous structure, acidity and other parameters including biomass type, biomass/catalyst ratio and operation temperature on cracking activity, selectivity, stability and deactivation are summarized. While, the proposed mechanisms on the bio-oil upgrading over the zeolite-based catalysts and the possibility for the application of the developed catalysts in the industrial process are discussed. Furthermore, the main strategies including metal modification, construction of zeolites with a hierarchical structure and synthesis of special morphologies with hollow structure or core/shell structure and nanosheet structures for the improvement of deoxygenation property performance are introduced. It is expected to provide a guidance for the design and fabricate more excellent zeolite-based catalysts and their application for high-quality bio-oil production from fast biomass pyrolysis.</p></div>\",\"PeriodicalId\":101081,\"journal\":{\"name\":\"Resources Chemicals and Materials\",\"volume\":\"1 2\",\"pages\":\"Pages 167-183\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2772443322000186/pdfft?md5=e51486427e37ec243e7cc2636004414b&pid=1-s2.0-S2772443322000186-main.pdf\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Resources Chemicals and Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2772443322000186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Resources Chemicals and Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772443322000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Zeolite-based cracking catalysts for bio-oil upgrading: A critical review
Fast pyrolysis of biomass is an attractive way to produce bio-oil since it can convert most of biomass components directly into liquid fuel. However, the bio-oils obtained from such a fast pyrolysis process always have highly complex oxygenated compounds with high viscosity, serious corrosivity, and rather instability. Thus, before the raw bio-oils are used as fuel or chemical feedstock, they must be upgraded, especially deoxygenated. Cracking of bio-oils over porous solid catalysts such as zeolite-based catalysts at ambient pressure is considered one of effective ways for the bio-oil upgrading, especially in which hydrogen gas is not necessary. Herein, zeolite-based catalysts (mainly HZSM-5 based catalysts) for the upgrading of pyrolysis bio-oils are critically reviewed. The effects of porous structure, acidity and other parameters including biomass type, biomass/catalyst ratio and operation temperature on cracking activity, selectivity, stability and deactivation are summarized. While, the proposed mechanisms on the bio-oil upgrading over the zeolite-based catalysts and the possibility for the application of the developed catalysts in the industrial process are discussed. Furthermore, the main strategies including metal modification, construction of zeolites with a hierarchical structure and synthesis of special morphologies with hollow structure or core/shell structure and nanosheet structures for the improvement of deoxygenation property performance are introduced. It is expected to provide a guidance for the design and fabricate more excellent zeolite-based catalysts and their application for high-quality bio-oil production from fast biomass pyrolysis.