BotCamp:社交活动中机器人驱动的互动

Noor Abu-El-Rub, A. Mueen
{"title":"BotCamp:社交活动中机器人驱动的互动","authors":"Noor Abu-El-Rub, A. Mueen","doi":"10.1145/3308558.3313420","DOIUrl":null,"url":null,"abstract":"Bots (i.e. automated accounts) involve in social campaigns typically for two obvious reasons: to inorganically sway public opinion and to build social capital exploiting the organic popularity of social campaigns. In the process, bots interact with each other and engage in human activities (e.g. likes, retweets, and following). In this work, we detect a large number of bots interested in politics. We perform multi-aspect (i.e. temporal, textual, and topographical) clustering of bots, and ensemble the clusters to identify campaigns of bots. We observe similarity among the bots in a campaign in various aspects such as temporal correlation, sentimental alignment, and topical grouping. However, we also discover bots compete in gaining attention from humans and occasionally engage in arguments. We classify such bot interactions in two primary groups: agreeing (i.e. positive) and disagreeing (i.e. negative) interactions and develop an automatic interaction classifier to discover novel interactions among bots participating in social campaigns.","PeriodicalId":23013,"journal":{"name":"The World Wide Web Conference","volume":"12 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2019-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"28","resultStr":"{\"title\":\"BotCamp: Bot-driven Interactions in Social Campaigns\",\"authors\":\"Noor Abu-El-Rub, A. Mueen\",\"doi\":\"10.1145/3308558.3313420\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bots (i.e. automated accounts) involve in social campaigns typically for two obvious reasons: to inorganically sway public opinion and to build social capital exploiting the organic popularity of social campaigns. In the process, bots interact with each other and engage in human activities (e.g. likes, retweets, and following). In this work, we detect a large number of bots interested in politics. We perform multi-aspect (i.e. temporal, textual, and topographical) clustering of bots, and ensemble the clusters to identify campaigns of bots. We observe similarity among the bots in a campaign in various aspects such as temporal correlation, sentimental alignment, and topical grouping. However, we also discover bots compete in gaining attention from humans and occasionally engage in arguments. We classify such bot interactions in two primary groups: agreeing (i.e. positive) and disagreeing (i.e. negative) interactions and develop an automatic interaction classifier to discover novel interactions among bots participating in social campaigns.\",\"PeriodicalId\":23013,\"journal\":{\"name\":\"The World Wide Web Conference\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"28\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The World Wide Web Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3308558.3313420\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The World Wide Web Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3308558.3313420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 28

摘要

机器人(即自动账户)参与社交活动通常有两个明显的原因:无机地影响公众舆论,利用社交活动的有机人气建立社会资本。在这个过程中,机器人彼此互动并参与人类活动(例如点赞、转发和关注)。在这项工作中,我们检测到大量对政治感兴趣的机器人。我们执行机器人的多方面(即时间,文本和地形)聚类,并集成聚类以识别机器人的活动。我们观察到活动中机器人之间在时间相关性、情感一致性和主题分组等各个方面的相似性。然而,我们也发现机器人在吸引人类注意力方面存在竞争,偶尔还会参与争论。我们将这种机器人交互分为两大类:同意(即积极)和不同意(即消极)交互,并开发了一个自动交互分类器来发现参与社交活动的机器人之间的新交互。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
BotCamp: Bot-driven Interactions in Social Campaigns
Bots (i.e. automated accounts) involve in social campaigns typically for two obvious reasons: to inorganically sway public opinion and to build social capital exploiting the organic popularity of social campaigns. In the process, bots interact with each other and engage in human activities (e.g. likes, retweets, and following). In this work, we detect a large number of bots interested in politics. We perform multi-aspect (i.e. temporal, textual, and topographical) clustering of bots, and ensemble the clusters to identify campaigns of bots. We observe similarity among the bots in a campaign in various aspects such as temporal correlation, sentimental alignment, and topical grouping. However, we also discover bots compete in gaining attention from humans and occasionally engage in arguments. We classify such bot interactions in two primary groups: agreeing (i.e. positive) and disagreeing (i.e. negative) interactions and develop an automatic interaction classifier to discover novel interactions among bots participating in social campaigns.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Decoupled Smoothing on Graphs Think Outside the Dataset: Finding Fraudulent Reviews using Cross-Dataset Analysis Augmenting Knowledge Tracing by Considering Forgetting Behavior Enhancing Fashion Recommendation with Visual Compatibility Relationship Judging a Book by Its Cover: The Effect of Facial Perception on Centrality in Social Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1