Hanseup Kim, A. J'auregui, C. Morrison, K. Najafi, L. Bernal, P. Washabaugh
{"title":"基于亥姆霍兹共振的低功率静电微推力器","authors":"Hanseup Kim, A. J'auregui, C. Morrison, K. Najafi, L. Bernal, P. Washabaugh","doi":"10.1109/MEMSYS.2007.4433032","DOIUrl":null,"url":null,"abstract":"This paper reports the development of a low-power electrostatic microthruster based-on Helmholtz resonance. This fluidic resonance phenomenon is utilized to create high-speed jets of air for thrust generation. The microthruster contains a curved-electrode (~8.8 mum deep) and provides high force to, and large deflection of a vibrating membrane thus resulting in twice higher thrust performance than previously reported devices with a flat-electrode design. The out-of-plane curved electrode is formed on a silicon wafer through the controlled buckling of stressed thin films of oxide, poly silicon, and nitride. The fabricated device contains 25 microthrusters, has a footprint of 1.6 times1.6 times 0.1 cm3 , and weighs about 0.35 g. It operates using a 140 V and 70 kHz sinusoidal signal and produces: 1) thrust of 55.6 muN, 2) maximum air velocity of 1.2 m/s, and 3) average velocity of 1.0 m/s across the whole chip. The average power consumption of the 25 micro thruster array is 3.1 mW. The generated jet was visualized by pumping ethanol clouds into a vertical gas stream up to 12 cm.","PeriodicalId":6388,"journal":{"name":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","volume":"9 1","pages":"127-130"},"PeriodicalIF":0.0000,"publicationDate":"2007-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Low-power electrostatic microthruster for propulsion based on helmholtz-resonance\",\"authors\":\"Hanseup Kim, A. J'auregui, C. Morrison, K. Najafi, L. Bernal, P. Washabaugh\",\"doi\":\"10.1109/MEMSYS.2007.4433032\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper reports the development of a low-power electrostatic microthruster based-on Helmholtz resonance. This fluidic resonance phenomenon is utilized to create high-speed jets of air for thrust generation. The microthruster contains a curved-electrode (~8.8 mum deep) and provides high force to, and large deflection of a vibrating membrane thus resulting in twice higher thrust performance than previously reported devices with a flat-electrode design. The out-of-plane curved electrode is formed on a silicon wafer through the controlled buckling of stressed thin films of oxide, poly silicon, and nitride. The fabricated device contains 25 microthrusters, has a footprint of 1.6 times1.6 times 0.1 cm3 , and weighs about 0.35 g. It operates using a 140 V and 70 kHz sinusoidal signal and produces: 1) thrust of 55.6 muN, 2) maximum air velocity of 1.2 m/s, and 3) average velocity of 1.0 m/s across the whole chip. The average power consumption of the 25 micro thruster array is 3.1 mW. The generated jet was visualized by pumping ethanol clouds into a vertical gas stream up to 12 cm.\",\"PeriodicalId\":6388,\"journal\":{\"name\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"volume\":\"9 1\",\"pages\":\"127-130\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MEMSYS.2007.4433032\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE 20th International Conference on Micro Electro Mechanical Systems (MEMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MEMSYS.2007.4433032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low-power electrostatic microthruster for propulsion based on helmholtz-resonance
This paper reports the development of a low-power electrostatic microthruster based-on Helmholtz resonance. This fluidic resonance phenomenon is utilized to create high-speed jets of air for thrust generation. The microthruster contains a curved-electrode (~8.8 mum deep) and provides high force to, and large deflection of a vibrating membrane thus resulting in twice higher thrust performance than previously reported devices with a flat-electrode design. The out-of-plane curved electrode is formed on a silicon wafer through the controlled buckling of stressed thin films of oxide, poly silicon, and nitride. The fabricated device contains 25 microthrusters, has a footprint of 1.6 times1.6 times 0.1 cm3 , and weighs about 0.35 g. It operates using a 140 V and 70 kHz sinusoidal signal and produces: 1) thrust of 55.6 muN, 2) maximum air velocity of 1.2 m/s, and 3) average velocity of 1.0 m/s across the whole chip. The average power consumption of the 25 micro thruster array is 3.1 mW. The generated jet was visualized by pumping ethanol clouds into a vertical gas stream up to 12 cm.