Wenbin Li, Yang Chen, JeeHang Lee, Gang Ren, D. Cosker
{"title":"基于rgb运动成像和方向滤波的连续模糊场景鲁棒光流估计","authors":"Wenbin Li, Yang Chen, JeeHang Lee, Gang Ren, D. Cosker","doi":"10.1109/WACV.2014.6836022","DOIUrl":null,"url":null,"abstract":"Optical flow estimation is a difficult task given real-world video footage with camera and object blur. In this paper, we combine a 3D pose&position tracker with an RGB sensor allowing us to capture video footage together with 3D camera motion. We show that the additional camera motion information can be embedded into a hybrid optical flow framework by interleaving an iterative blind deconvolution and warping based minimization scheme. Such a hybrid framework significantly improves the accuracy of optical flow estimation in scenes with strong blur. Our approach yields improved overall performance against three state-of-the-art baseline methods applied to our proposed ground truth sequences, as well as in several other real-world sequences captured by our novel imaging system.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"108 1","pages":"792-799"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Robust optical flow estimation for continuous blurred scenes using RGB-motion imaging and directional filtering\",\"authors\":\"Wenbin Li, Yang Chen, JeeHang Lee, Gang Ren, D. Cosker\",\"doi\":\"10.1109/WACV.2014.6836022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical flow estimation is a difficult task given real-world video footage with camera and object blur. In this paper, we combine a 3D pose&position tracker with an RGB sensor allowing us to capture video footage together with 3D camera motion. We show that the additional camera motion information can be embedded into a hybrid optical flow framework by interleaving an iterative blind deconvolution and warping based minimization scheme. Such a hybrid framework significantly improves the accuracy of optical flow estimation in scenes with strong blur. Our approach yields improved overall performance against three state-of-the-art baseline methods applied to our proposed ground truth sequences, as well as in several other real-world sequences captured by our novel imaging system.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"108 1\",\"pages\":\"792-799\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6836022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Robust optical flow estimation for continuous blurred scenes using RGB-motion imaging and directional filtering
Optical flow estimation is a difficult task given real-world video footage with camera and object blur. In this paper, we combine a 3D pose&position tracker with an RGB sensor allowing us to capture video footage together with 3D camera motion. We show that the additional camera motion information can be embedded into a hybrid optical flow framework by interleaving an iterative blind deconvolution and warping based minimization scheme. Such a hybrid framework significantly improves the accuracy of optical flow estimation in scenes with strong blur. Our approach yields improved overall performance against three state-of-the-art baseline methods applied to our proposed ground truth sequences, as well as in several other real-world sequences captured by our novel imaging system.