基于rgb运动成像和方向滤波的连续模糊场景鲁棒光流估计

Wenbin Li, Yang Chen, JeeHang Lee, Gang Ren, D. Cosker
{"title":"基于rgb运动成像和方向滤波的连续模糊场景鲁棒光流估计","authors":"Wenbin Li, Yang Chen, JeeHang Lee, Gang Ren, D. Cosker","doi":"10.1109/WACV.2014.6836022","DOIUrl":null,"url":null,"abstract":"Optical flow estimation is a difficult task given real-world video footage with camera and object blur. In this paper, we combine a 3D pose&position tracker with an RGB sensor allowing us to capture video footage together with 3D camera motion. We show that the additional camera motion information can be embedded into a hybrid optical flow framework by interleaving an iterative blind deconvolution and warping based minimization scheme. Such a hybrid framework significantly improves the accuracy of optical flow estimation in scenes with strong blur. Our approach yields improved overall performance against three state-of-the-art baseline methods applied to our proposed ground truth sequences, as well as in several other real-world sequences captured by our novel imaging system.","PeriodicalId":73325,"journal":{"name":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","volume":"108 1","pages":"792-799"},"PeriodicalIF":0.0000,"publicationDate":"2014-03-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":"{\"title\":\"Robust optical flow estimation for continuous blurred scenes using RGB-motion imaging and directional filtering\",\"authors\":\"Wenbin Li, Yang Chen, JeeHang Lee, Gang Ren, D. Cosker\",\"doi\":\"10.1109/WACV.2014.6836022\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical flow estimation is a difficult task given real-world video footage with camera and object blur. In this paper, we combine a 3D pose&position tracker with an RGB sensor allowing us to capture video footage together with 3D camera motion. We show that the additional camera motion information can be embedded into a hybrid optical flow framework by interleaving an iterative blind deconvolution and warping based minimization scheme. Such a hybrid framework significantly improves the accuracy of optical flow estimation in scenes with strong blur. Our approach yields improved overall performance against three state-of-the-art baseline methods applied to our proposed ground truth sequences, as well as in several other real-world sequences captured by our novel imaging system.\",\"PeriodicalId\":73325,\"journal\":{\"name\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"volume\":\"108 1\",\"pages\":\"792-799\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-03-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"17\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WACV.2014.6836022\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Winter Conference on Applications of Computer Vision. IEEE Winter Conference on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACV.2014.6836022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

摘要

对于带有摄像机和物体模糊的真实视频片段,光流估计是一项困难的任务。在本文中,我们将3D姿势和位置跟踪器与RGB传感器相结合,使我们能够捕获视频片段以及3D相机运动。我们展示了额外的相机运动信息可以嵌入到一个混合光流框架通过交错的迭代盲反褶积和基于扭曲的最小化方案。这种混合框架显著提高了在强模糊场景下光流估计的精度。我们的方法比应用于我们提出的地面真值序列的三种最先进的基线方法以及我们的新型成像系统捕获的其他几个真实世界序列的总体性能有所提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust optical flow estimation for continuous blurred scenes using RGB-motion imaging and directional filtering
Optical flow estimation is a difficult task given real-world video footage with camera and object blur. In this paper, we combine a 3D pose&position tracker with an RGB sensor allowing us to capture video footage together with 3D camera motion. We show that the additional camera motion information can be embedded into a hybrid optical flow framework by interleaving an iterative blind deconvolution and warping based minimization scheme. Such a hybrid framework significantly improves the accuracy of optical flow estimation in scenes with strong blur. Our approach yields improved overall performance against three state-of-the-art baseline methods applied to our proposed ground truth sequences, as well as in several other real-world sequences captured by our novel imaging system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ordinal Classification with Distance Regularization for Robust Brain Age Prediction. Brainomaly: Unsupervised Neurologic Disease Detection Utilizing Unannotated T1-weighted Brain MR Images. PathLDM: Text conditioned Latent Diffusion Model for Histopathology. Domain Generalization with Correlated Style Uncertainty. Semantic-aware Video Representation for Few-shot Action Recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1