{"title":"不同咖啡冲泡方法的碳足迹","authors":"Matteo Cibelli, A. Cimini, M. Moresi","doi":"10.3303/CET2187063","DOIUrl":null,"url":null,"abstract":"The aim of this work was to assess which coffee brewing method was the most environmentally friendly one among a 3-cup induction Moka pot, and two single-serving coffee machines. To this end, a streamlined Life Cycle Assessment including the use of the above coffee machines, production, transportation, and disposal of all packaging materials used, and disposal of spent coffee grounds was carried out in compliance with the Publicly Available Specification (PAS) 2050 standard method. The production of one 40-mL coffee cup with the induction Moka pot gave rise to as low as 8 g CO2e, these emissions being about 18% or 56% lower than those resulting from the use of a coffee capsule (10 g CO2e) or pod (18.5 g CO2e) coffee machine. These estimates might help the eco-conscious consumer to assess the environmental impact of his/her consumption habits.","PeriodicalId":9695,"journal":{"name":"Chemical engineering transactions","volume":"108 1","pages":"373-378"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Carbon Footprint of Different Coffee Brewing Methods\",\"authors\":\"Matteo Cibelli, A. Cimini, M. Moresi\",\"doi\":\"10.3303/CET2187063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this work was to assess which coffee brewing method was the most environmentally friendly one among a 3-cup induction Moka pot, and two single-serving coffee machines. To this end, a streamlined Life Cycle Assessment including the use of the above coffee machines, production, transportation, and disposal of all packaging materials used, and disposal of spent coffee grounds was carried out in compliance with the Publicly Available Specification (PAS) 2050 standard method. The production of one 40-mL coffee cup with the induction Moka pot gave rise to as low as 8 g CO2e, these emissions being about 18% or 56% lower than those resulting from the use of a coffee capsule (10 g CO2e) or pod (18.5 g CO2e) coffee machine. These estimates might help the eco-conscious consumer to assess the environmental impact of his/her consumption habits.\",\"PeriodicalId\":9695,\"journal\":{\"name\":\"Chemical engineering transactions\",\"volume\":\"108 1\",\"pages\":\"373-378\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical engineering transactions\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3303/CET2187063\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Chemical Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical engineering transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3303/CET2187063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Chemical Engineering","Score":null,"Total":0}
Carbon Footprint of Different Coffee Brewing Methods
The aim of this work was to assess which coffee brewing method was the most environmentally friendly one among a 3-cup induction Moka pot, and two single-serving coffee machines. To this end, a streamlined Life Cycle Assessment including the use of the above coffee machines, production, transportation, and disposal of all packaging materials used, and disposal of spent coffee grounds was carried out in compliance with the Publicly Available Specification (PAS) 2050 standard method. The production of one 40-mL coffee cup with the induction Moka pot gave rise to as low as 8 g CO2e, these emissions being about 18% or 56% lower than those resulting from the use of a coffee capsule (10 g CO2e) or pod (18.5 g CO2e) coffee machine. These estimates might help the eco-conscious consumer to assess the environmental impact of his/her consumption habits.
期刊介绍:
Chemical Engineering Transactions (CET) aims to be a leading international journal for publication of original research and review articles in chemical, process, and environmental engineering. CET begin in 2002 as a vehicle for publication of high-quality papers in chemical engineering, connected with leading international conferences. In 2014, CET opened a new era as an internationally-recognised journal. Articles containing original research results, covering any aspect from molecular phenomena through to industrial case studies and design, with a strong influence of chemical engineering methodologies and ethos are particularly welcome. We encourage state-of-the-art contributions relating to the future of industrial processing, sustainable design, as well as transdisciplinary research that goes beyond the conventional bounds of chemical engineering. Short reviews on hot topics, emerging technologies, and other areas of high interest should highlight unsolved challenges and provide clear directions for future research. The journal publishes periodically with approximately 6 volumes per year. Core topic areas: -Batch processing- Biotechnology- Circular economy and integration- Environmental engineering- Fluid flow and fluid mechanics- Green materials and processing- Heat and mass transfer- Innovation engineering- Life cycle analysis and optimisation- Modelling and simulation- Operations and supply chain management- Particle technology- Process dynamics, flexibility, and control- Process integration and design- Process intensification and optimisation- Process safety- Product development- Reaction engineering- Renewable energy- Separation processes- Smart industry, city, and agriculture- Sustainability- Systems engineering- Thermodynamic- Waste minimisation, processing and management- Water and wastewater engineering