机器学习在电子设计自动化中的机会

P. Beerel, Massoud Pedram
{"title":"机器学习在电子设计自动化中的机会","authors":"P. Beerel, Massoud Pedram","doi":"10.1109/ISCAS.2018.8351731","DOIUrl":null,"url":null,"abstract":"The rise of machine learning (ML) has introduced many opportunities for computer-aided-design, VLSI design, and their intersection. Related to computer-aided design, we review several classical CAD algorithms which can benefit from ML, outline the key challenges, and discuss promising approaches. In particular, because some of the existing ML accelerators have used asynchronous design, we review the state-of-the-art in asynchronous CAD support, and identify opportunities for ML within these flows.","PeriodicalId":6569,"journal":{"name":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"28 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2018-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"24","resultStr":"{\"title\":\"Opportunities for Machine Learning in Electronic Design Automation\",\"authors\":\"P. Beerel, Massoud Pedram\",\"doi\":\"10.1109/ISCAS.2018.8351731\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rise of machine learning (ML) has introduced many opportunities for computer-aided-design, VLSI design, and their intersection. Related to computer-aided design, we review several classical CAD algorithms which can benefit from ML, outline the key challenges, and discuss promising approaches. In particular, because some of the existing ML accelerators have used asynchronous design, we review the state-of-the-art in asynchronous CAD support, and identify opportunities for ML within these flows.\",\"PeriodicalId\":6569,\"journal\":{\"name\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"volume\":\"28 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-05-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"24\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Symposium on Circuits and Systems (ISCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2018.8351731\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2018.8351731","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 24

摘要

机器学习(ML)的兴起为计算机辅助设计、超大规模集成电路设计及其交叉领域带来了许多机会。与计算机辅助设计相关,我们回顾了几种可以从ML中受益的经典CAD算法,概述了关键挑战,并讨论了有前途的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Opportunities for Machine Learning in Electronic Design Automation
The rise of machine learning (ML) has introduced many opportunities for computer-aided-design, VLSI design, and their intersection. Related to computer-aided design, we review several classical CAD algorithms which can benefit from ML, outline the key challenges, and discuss promising approaches. In particular, because some of the existing ML accelerators have used asynchronous design, we review the state-of-the-art in asynchronous CAD support, and identify opportunities for ML within these flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Ultra-Low Power Wide-Dynamic-Range Universal Interface for Capacitive and Resistive Sensors An Energy-Efficient 13-bit Zero-Crossing ΔΣ Capacitance-to-Digital Converter with 1 pF-to-10 nF Sensing Range Power Optimized Comparator Selecting Method For Stochastic ADC Brain-inspired recurrent neural network with plastic RRAM synapses On the Use of Approximate Multipliers in LMS Adaptive Filters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1