S. Liapis, Konstantinos Christantonis, Victor Chazan Pantzalis, Anastassios Manos, D. Filippidou, Christos Tjortjis
{"title":"基于分类的流量预测方法:以COVID-19的影响为特征","authors":"S. Liapis, Konstantinos Christantonis, Victor Chazan Pantzalis, Anastassios Manos, D. Filippidou, Christos Tjortjis","doi":"10.3233/ICA-210663","DOIUrl":null,"url":null,"abstract":"This paper presents a novel methodology using classification for day-ahead traffic prediction. It addresses the research question whether traffic state can be forecasted based on meteorological conditions, seasonality, and time intervals, as well as COVID-19 related restrictions. We propose reliable models utilizing smaller data partitions. Apart from feature selection, we incorporate new features related to movement restrictions due to COVID-19, forming a novel data model. Our methodology explores the desired training subset. Results showed that various models can be developed, with varying levels of success. The best outcome was achieved when factoring in all relevant features and training on a proposed subset. Accuracy improved significantly compared to previously published work.","PeriodicalId":50358,"journal":{"name":"Integrated Computer-Aided Engineering","volume":"31 1","pages":"417-435"},"PeriodicalIF":5.8000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"A methodology using classification for traffic prediction: Featuring the impact of COVID-19\",\"authors\":\"S. Liapis, Konstantinos Christantonis, Victor Chazan Pantzalis, Anastassios Manos, D. Filippidou, Christos Tjortjis\",\"doi\":\"10.3233/ICA-210663\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a novel methodology using classification for day-ahead traffic prediction. It addresses the research question whether traffic state can be forecasted based on meteorological conditions, seasonality, and time intervals, as well as COVID-19 related restrictions. We propose reliable models utilizing smaller data partitions. Apart from feature selection, we incorporate new features related to movement restrictions due to COVID-19, forming a novel data model. Our methodology explores the desired training subset. Results showed that various models can be developed, with varying levels of success. The best outcome was achieved when factoring in all relevant features and training on a proposed subset. Accuracy improved significantly compared to previously published work.\",\"PeriodicalId\":50358,\"journal\":{\"name\":\"Integrated Computer-Aided Engineering\",\"volume\":\"31 1\",\"pages\":\"417-435\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Integrated Computer-Aided Engineering\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.3233/ICA-210663\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Integrated Computer-Aided Engineering","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.3233/ICA-210663","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
A methodology using classification for traffic prediction: Featuring the impact of COVID-19
This paper presents a novel methodology using classification for day-ahead traffic prediction. It addresses the research question whether traffic state can be forecasted based on meteorological conditions, seasonality, and time intervals, as well as COVID-19 related restrictions. We propose reliable models utilizing smaller data partitions. Apart from feature selection, we incorporate new features related to movement restrictions due to COVID-19, forming a novel data model. Our methodology explores the desired training subset. Results showed that various models can be developed, with varying levels of success. The best outcome was achieved when factoring in all relevant features and training on a proposed subset. Accuracy improved significantly compared to previously published work.
期刊介绍:
Integrated Computer-Aided Engineering (ICAE) was founded in 1993. "Based on the premise that interdisciplinary thinking and synergistic collaboration of disciplines can solve complex problems, open new frontiers, and lead to true innovations and breakthroughs, the cornerstone of industrial competitiveness and advancement of the society" as noted in the inaugural issue of the journal.
The focus of ICAE is the integration of leading edge and emerging computer and information technologies for innovative solution of engineering problems. The journal fosters interdisciplinary research and presents a unique forum for innovative computer-aided engineering. It also publishes novel industrial applications of CAE, thus helping to bring new computational paradigms from research labs and classrooms to reality. Areas covered by the journal include (but are not limited to) artificial intelligence, advanced signal processing, biologically inspired computing, cognitive modeling, concurrent engineering, database management, distributed computing, evolutionary computing, fuzzy logic, genetic algorithms, geometric modeling, intelligent and adaptive systems, internet-based technologies, knowledge discovery and engineering, machine learning, mechatronics, mobile computing, multimedia technologies, networking, neural network computing, object-oriented systems, optimization and search, parallel processing, robotics virtual reality, and visualization techniques.