动物PET透射断层扫描三维锥束重建

Junjun Deng, S. Siegel, Mu Chen
{"title":"动物PET透射断层扫描三维锥束重建","authors":"Junjun Deng, S. Siegel, Mu Chen","doi":"10.1109/NSSMIC.2010.5874323","DOIUrl":null,"url":null,"abstract":"In PET scanners, one or multiple collimated point sources are used to acquire transmission measurements to generate attenuation maps for emission tomography [1]. The transmission acquisition is, intrinsically, 3D cone beam geometry. The acquired list-mode data are transformed into sinograms in the histogram process. Thereafter, transmission images are reconstructed from the sinograms, which are then re-projected to generate an attenuation map. Conventionally, a 2D rebinning method is used to transform the list-mode data into 2D parallel beam sinograms [2], and, accordingly, 2D reconstruction algorithms are employed to generate transmission images. Due to the inaccuracy of the 2D rebinning method, only limited oblique Lines of Response (LOR) can be used, causing limited axial coverage. If more oblique LORs were to be accepted in the rebinning process, artifacts would be introduced in the transmission images that may result in inaccurate attenuation correction factors. To address this issue, a 3D cone-beam rebinning process is proposed to faithfully transform the list-mode data, and the associated reconstruction algorithms for cone-beam geometry have been adopted to generate the transmission images. The experimental results showed the new method produced better images, especially in the axial direction.","PeriodicalId":13048,"journal":{"name":"IEEE Nuclear Science Symposuim & Medical Imaging Conference","volume":"94 1","pages":"2885-2888"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"3D cone-beam rebinning and reconstruction for animal PET transmission tomography\",\"authors\":\"Junjun Deng, S. Siegel, Mu Chen\",\"doi\":\"10.1109/NSSMIC.2010.5874323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In PET scanners, one or multiple collimated point sources are used to acquire transmission measurements to generate attenuation maps for emission tomography [1]. The transmission acquisition is, intrinsically, 3D cone beam geometry. The acquired list-mode data are transformed into sinograms in the histogram process. Thereafter, transmission images are reconstructed from the sinograms, which are then re-projected to generate an attenuation map. Conventionally, a 2D rebinning method is used to transform the list-mode data into 2D parallel beam sinograms [2], and, accordingly, 2D reconstruction algorithms are employed to generate transmission images. Due to the inaccuracy of the 2D rebinning method, only limited oblique Lines of Response (LOR) can be used, causing limited axial coverage. If more oblique LORs were to be accepted in the rebinning process, artifacts would be introduced in the transmission images that may result in inaccurate attenuation correction factors. To address this issue, a 3D cone-beam rebinning process is proposed to faithfully transform the list-mode data, and the associated reconstruction algorithms for cone-beam geometry have been adopted to generate the transmission images. The experimental results showed the new method produced better images, especially in the axial direction.\",\"PeriodicalId\":13048,\"journal\":{\"name\":\"IEEE Nuclear Science Symposuim & Medical Imaging Conference\",\"volume\":\"94 1\",\"pages\":\"2885-2888\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Nuclear Science Symposuim & Medical Imaging Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NSSMIC.2010.5874323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Nuclear Science Symposuim & Medical Imaging Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NSSMIC.2010.5874323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在PET扫描仪中,使用一个或多个准直点源来获取透射测量,以生成用于发射断层扫描的衰减图[1]。传输采集本质上是三维锥束几何。在直方图处理过程中,将获取的列表模式数据转换为符号图。然后,从正弦图重建传输图像,然后重新投影以生成衰减图。传统的方法是采用二维再合方法将列表模式数据转换为二维平行光束图[2],并采用二维重建算法生成传输图像。由于二维重划方法的不准确性,只能使用有限的斜响应线(LOR),导致轴向覆盖有限。如果在重划过程中接受更斜的LORs,则会在传输图像中引入伪影,从而导致衰减校正因子不准确。为了解决这一问题,提出了一种三维锥束重建过程,以忠实地转换列表模式数据,并采用相关的锥束几何重建算法生成传输图像。实验结果表明,新方法能获得较好的图像,尤其是轴向图像。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
3D cone-beam rebinning and reconstruction for animal PET transmission tomography
In PET scanners, one or multiple collimated point sources are used to acquire transmission measurements to generate attenuation maps for emission tomography [1]. The transmission acquisition is, intrinsically, 3D cone beam geometry. The acquired list-mode data are transformed into sinograms in the histogram process. Thereafter, transmission images are reconstructed from the sinograms, which are then re-projected to generate an attenuation map. Conventionally, a 2D rebinning method is used to transform the list-mode data into 2D parallel beam sinograms [2], and, accordingly, 2D reconstruction algorithms are employed to generate transmission images. Due to the inaccuracy of the 2D rebinning method, only limited oblique Lines of Response (LOR) can be used, causing limited axial coverage. If more oblique LORs were to be accepted in the rebinning process, artifacts would be introduced in the transmission images that may result in inaccurate attenuation correction factors. To address this issue, a 3D cone-beam rebinning process is proposed to faithfully transform the list-mode data, and the associated reconstruction algorithms for cone-beam geometry have been adopted to generate the transmission images. The experimental results showed the new method produced better images, especially in the axial direction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CaF2(Eu): An “Old” scintillator revisited Evaluation of the accuracy and robustness of a motion correction algorithm for PET using a novel phantom approach The performance of GridPix detectors Applying the neutron scatter camera to treaty verification and warhead monitoring Development of an 8-channel time based readout ASIC for PET applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1