一种位置感知混合web服务QoS预测算法

Hai-hong E, Jun-jie TONG, Mei-na SONG, Jun-de SONG
{"title":"一种位置感知混合web服务QoS预测算法","authors":"Hai-hong E,&nbsp;Jun-jie TONG,&nbsp;Mei-na SONG,&nbsp;Jun-de SONG","doi":"10.1016/S1005-8885(14)60515-X","DOIUrl":null,"url":null,"abstract":"<div><p>Quality-of-service (QoS) describes the non-functional characteristics of Web services. As such, the QoS is a critical parameter in service selection, composition and fault tolerance, and must be accurately determined by some type of QoS prediction method. However, with the dramatic increase in the number of Web services, the prediction failure caused by data sparseness has become a critical challenge. In this paper, a new hybrid user-location-aware prediction based on WAA (HUWAA) is proposed. The implicit neighbor search is optimized by incorporating location factors. Meanwhile, the ability of the improved algorithms to solve the data sparsity problem is validated in experiments on public real world datasets. The new algorithms outperform the existing IPCC, UPCC and WSRec algorithms.</p></div>","PeriodicalId":35359,"journal":{"name":"Journal of China Universities of Posts and Telecommunications","volume":"21 ","pages":"Pages 34-40"},"PeriodicalIF":0.0000,"publicationDate":"2014-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/S1005-8885(14)60515-X","citationCount":"2","resultStr":"{\"title\":\"A location-aware hybrid web service QoS prediction algorithm\",\"authors\":\"Hai-hong E,&nbsp;Jun-jie TONG,&nbsp;Mei-na SONG,&nbsp;Jun-de SONG\",\"doi\":\"10.1016/S1005-8885(14)60515-X\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Quality-of-service (QoS) describes the non-functional characteristics of Web services. As such, the QoS is a critical parameter in service selection, composition and fault tolerance, and must be accurately determined by some type of QoS prediction method. However, with the dramatic increase in the number of Web services, the prediction failure caused by data sparseness has become a critical challenge. In this paper, a new hybrid user-location-aware prediction based on WAA (HUWAA) is proposed. The implicit neighbor search is optimized by incorporating location factors. Meanwhile, the ability of the improved algorithms to solve the data sparsity problem is validated in experiments on public real world datasets. The new algorithms outperform the existing IPCC, UPCC and WSRec algorithms.</p></div>\",\"PeriodicalId\":35359,\"journal\":{\"name\":\"Journal of China Universities of Posts and Telecommunications\",\"volume\":\"21 \",\"pages\":\"Pages 34-40\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://sci-hub-pdf.com/10.1016/S1005-8885(14)60515-X\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of China Universities of Posts and Telecommunications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S100588851460515X\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"Computer Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of China Universities of Posts and Telecommunications","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S100588851460515X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Computer Science","Score":null,"Total":0}
引用次数: 2

摘要

服务质量(QoS)描述了Web服务的非功能特征。因此,QoS是服务选择、组合和容错的关键参数,必须通过某种类型的QoS预测方法来准确确定。然而,随着Web服务数量的急剧增加,由数据稀疏性引起的预测失败已经成为一个严峻的挑战。提出了一种基于WAA的混合用户位置感知预测方法(HUWAA)。隐式邻居搜索通过结合位置因素进行优化。同时,在公开的真实数据集上进行了实验,验证了改进算法解决数据稀疏性问题的能力。新算法优于现有的IPCC、UPCC和WSRec算法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A location-aware hybrid web service QoS prediction algorithm

Quality-of-service (QoS) describes the non-functional characteristics of Web services. As such, the QoS is a critical parameter in service selection, composition and fault tolerance, and must be accurately determined by some type of QoS prediction method. However, with the dramatic increase in the number of Web services, the prediction failure caused by data sparseness has become a critical challenge. In this paper, a new hybrid user-location-aware prediction based on WAA (HUWAA) is proposed. The implicit neighbor search is optimized by incorporating location factors. Meanwhile, the ability of the improved algorithms to solve the data sparsity problem is validated in experiments on public real world datasets. The new algorithms outperform the existing IPCC, UPCC and WSRec algorithms.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
1878
期刊最新文献
Survey of outdoor and indoor architecture design in TVWS networks Effect of non-spherical atmospheric charged particles and atmospheric visibility on performance of satellite-ground quantum link and parameters simulation Novel high PSRR high-order temperature-compensated subthreshold MOS bandgap reference Anomaly detection in smart grid based on encoder-decoder framework with recurrent neural network Palm vein recognition method based on fusion of local Gabor histograms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1