基于u型全卷积神经网络的路面裂缝检测

Q3 Engineering 光电工程 Pub Date : 2020-12-22 DOI:10.12086/OEE.2020.200036
Hanshen Chen, M. Yao, Qu Xin-yu
{"title":"基于u型全卷积神经网络的路面裂缝检测","authors":"Hanshen Chen, M. Yao, Qu Xin-yu","doi":"10.12086/OEE.2020.200036","DOIUrl":null,"url":null,"abstract":"Crack detection is one of the most important works in the system of pavement management. Cracks do not have a certain shape and the appearance of cracks usually changes drastically in different lighting conditions, making it hard to be detected by the algorithm with imagery analytics. To address these issues, we propose an effective U-shaped fully convolutional neural network called UCrackNet. First, a dropout layer is added into the skip connection to achieve better generalization. Second, pooling indices is used to reduce the shift and distortion during the up-sampling process. Third, four atrous convolutions with different dilation rates are densely connected in the bridge block, so that the receptive field of the network could cover each pixel of the whole image. In addition, multi-level fusion is introduced in the output stage to achieve better performance. Evaluations on the two public CrackTree206 and AIMCrack datasets demonstrate that the proposed method achieves high accuracy results and good generalization ability.","PeriodicalId":39552,"journal":{"name":"光电工程","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-12-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pavement crack detection based on the U-shaped fully convolutional neural network\",\"authors\":\"Hanshen Chen, M. Yao, Qu Xin-yu\",\"doi\":\"10.12086/OEE.2020.200036\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Crack detection is one of the most important works in the system of pavement management. Cracks do not have a certain shape and the appearance of cracks usually changes drastically in different lighting conditions, making it hard to be detected by the algorithm with imagery analytics. To address these issues, we propose an effective U-shaped fully convolutional neural network called UCrackNet. First, a dropout layer is added into the skip connection to achieve better generalization. Second, pooling indices is used to reduce the shift and distortion during the up-sampling process. Third, four atrous convolutions with different dilation rates are densely connected in the bridge block, so that the receptive field of the network could cover each pixel of the whole image. In addition, multi-level fusion is introduced in the output stage to achieve better performance. Evaluations on the two public CrackTree206 and AIMCrack datasets demonstrate that the proposed method achieves high accuracy results and good generalization ability.\",\"PeriodicalId\":39552,\"journal\":{\"name\":\"光电工程\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光电工程\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.12086/OEE.2020.200036\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Engineering\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光电工程","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.12086/OEE.2020.200036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

摘要

裂缝检测是路面管理系统中最重要的工作之一。裂缝没有一定的形状,在不同的光照条件下,裂缝的外观通常会发生很大的变化,这使得带有图像分析的算法很难检测到裂缝。为了解决这些问题,我们提出了一个有效的u形全卷积神经网络UCrackNet。首先,在跳跃连接中加入dropout层,实现更好的泛化。其次,利用池化指标减少上采样过程中的偏移和失真。第三,在桥块中密集连接4个不同扩张率的亚特鲁卷积,使网络的接受野覆盖整个图像的每个像素。此外,在输出阶段引入多级融合,以获得更好的性能。对CrackTree206和AIMCrack两个公开数据集的评价表明,该方法具有较高的准确率和良好的泛化能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pavement crack detection based on the U-shaped fully convolutional neural network
Crack detection is one of the most important works in the system of pavement management. Cracks do not have a certain shape and the appearance of cracks usually changes drastically in different lighting conditions, making it hard to be detected by the algorithm with imagery analytics. To address these issues, we propose an effective U-shaped fully convolutional neural network called UCrackNet. First, a dropout layer is added into the skip connection to achieve better generalization. Second, pooling indices is used to reduce the shift and distortion during the up-sampling process. Third, four atrous convolutions with different dilation rates are densely connected in the bridge block, so that the receptive field of the network could cover each pixel of the whole image. In addition, multi-level fusion is introduced in the output stage to achieve better performance. Evaluations on the two public CrackTree206 and AIMCrack datasets demonstrate that the proposed method achieves high accuracy results and good generalization ability.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
光电工程
光电工程 Engineering-Electrical and Electronic Engineering
CiteScore
2.00
自引率
0.00%
发文量
6622
期刊介绍:
期刊最新文献
The joint discriminative and generative learning for person re-identification of deep dual attention Fiber coupling technology of high brightness blue laser diode A few-shot learning based generative method for atmospheric polarization modelling Characteristics of wavefront correction using stacked liquid lens based on electrowetting-on-dielectric Research on joint coding for underwater single-photon video communication
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1