面向微操作的二自由度解耦旋转平台设计与建模

C. Liang, Fujun Wang, Yanling Tian, Dawei Zhang
{"title":"面向微操作的二自由度解耦旋转平台设计与建模","authors":"C. Liang, Fujun Wang, Yanling Tian, Dawei Zhang","doi":"10.1109/3M-NANO.2017.8286283","DOIUrl":null,"url":null,"abstract":"In high precision micro-manipulation task, precision angle adjustment is very important, which directly affects the quality of micro-manipulation. In this paper a novel 2-DOF (degree of freedom) rotation platform driven by two piezoelectric (PZT) actuators is designed to realize precision angle adjustment. The rotation platform has compact flexure-based mechanical structure and light weight. The rotation decoupling in X-and Y-axes are realized through the Hook joint. In order to obtain large range rotational angle, bridge-type mechanism is utilized in the 2-DOF rotation platform. An analytical model for rotational angle and input stiffness calculation is established. The influences of key parameters on the rotational angle as well as input stiffness of the rotation platform are analyzed. Finite element analysis (FEA) is conducted to evaluate the analytical model. The results of FEA fit the analytical model well and show the rotation platform exhibits good performance.","PeriodicalId":6582,"journal":{"name":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"1 1","pages":"7-12"},"PeriodicalIF":0.0000,"publicationDate":"2017-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design and modeling of a 2-DOF decoupled rotation platform for micro-manipulation\",\"authors\":\"C. Liang, Fujun Wang, Yanling Tian, Dawei Zhang\",\"doi\":\"10.1109/3M-NANO.2017.8286283\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In high precision micro-manipulation task, precision angle adjustment is very important, which directly affects the quality of micro-manipulation. In this paper a novel 2-DOF (degree of freedom) rotation platform driven by two piezoelectric (PZT) actuators is designed to realize precision angle adjustment. The rotation platform has compact flexure-based mechanical structure and light weight. The rotation decoupling in X-and Y-axes are realized through the Hook joint. In order to obtain large range rotational angle, bridge-type mechanism is utilized in the 2-DOF rotation platform. An analytical model for rotational angle and input stiffness calculation is established. The influences of key parameters on the rotational angle as well as input stiffness of the rotation platform are analyzed. Finite element analysis (FEA) is conducted to evaluate the analytical model. The results of FEA fit the analytical model well and show the rotation platform exhibits good performance.\",\"PeriodicalId\":6582,\"journal\":{\"name\":\"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"1 1\",\"pages\":\"7-12\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2017.8286283\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2017.8286283","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在高精度的微操作任务中,角的精确调节是非常重要的,它直接影响微操作的质量。本文设计了一种由两个压电驱动器驱动的2自由度旋转平台,实现了高精度角度调节。旋转平台具有紧凑的挠性机械结构,重量轻。通过Hook关节实现x轴和y轴的旋转解耦。为了获得大范围的旋转角度,在二自由度旋转平台中采用了桥式机构。建立了转角和输入刚度计算的解析模型。分析了关键参数对旋转平台转角和输入刚度的影响。对分析模型进行了有限元分析(FEA)。有限元分析结果与解析模型吻合较好,表明旋转平台具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Design and modeling of a 2-DOF decoupled rotation platform for micro-manipulation
In high precision micro-manipulation task, precision angle adjustment is very important, which directly affects the quality of micro-manipulation. In this paper a novel 2-DOF (degree of freedom) rotation platform driven by two piezoelectric (PZT) actuators is designed to realize precision angle adjustment. The rotation platform has compact flexure-based mechanical structure and light weight. The rotation decoupling in X-and Y-axes are realized through the Hook joint. In order to obtain large range rotational angle, bridge-type mechanism is utilized in the 2-DOF rotation platform. An analytical model for rotational angle and input stiffness calculation is established. The influences of key parameters on the rotational angle as well as input stiffness of the rotation platform are analyzed. Finite element analysis (FEA) is conducted to evaluate the analytical model. The results of FEA fit the analytical model well and show the rotation platform exhibits good performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of deposition temperature and heat treatment on properties of AZO nanolamination films Generation of conventional and dissipative solitons in a graphene-mode-locked fiber laser Fabrication of TiO2 nanowire arrays using laser interference lithography aided hydrothermal method Stretching of DNA molecules on mica surfaces by magnetic field Tunable graphene-based infrared perfect absorber for sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1